
ReportTechnical 52
Solving Games in Parallel with Linear-Time

Perfect Hash Functions

Stefan Edelkamp
Hartmut Messerschmidt

Damian Sulewski
TZI, Universität Bremen

Cengizhan Yücel
Technische Universität Dortmund

TZI-Bericht Nr. 52
2009

TZI-Berichte

Herausgeber:
Technologie-Zentrum Informatik
Universität Bremen
Am Fallturm 1
28359 Bremen
Telefon: +49-421-218-7272
Fax: +49-421-218-7820
E-Mail: info@tzi.de
http://www.tzi.de

ISSN 1613-3773

Solving Games in Parallel with Linear-Time Perfect

Hash Functions

Stefan Edelkamp, Hartmut Messerschmidt, Damian Sulewski

TZI, Universität Bremen, Germany

Cengizhan Yücel

Technische Universität Dortmund, Germany

July 24, 2009

Abstract

In this paper, we propose an efficient method of solving one- and two-player combinato-

rial games by mapping each state to a unique bit in memory.

In order to avoid collisions, a concise portfolio of perfect hash functions is provided.

Such perfect hash functions then address tables that serve as a compressed representation of

the search space and support the execution of exhaustive search algorithms like breadth-first

search and retrograde analysis.

Perfect hashing computes the rank of a state, while the inverse operation unrank re-

constructs the state given its rank. Efficient algorithms are derived, studied in detail and

generalized to a larger variety of games. We study rank and unrank functions for permu-

tation games with distinguishable pieces, for selection games with indistinguishable pieces,

and for general reachability sets. The running time for ranking and unranking in all three

cases is linear in the size of the state vector.

To overcome space and time limitations in solving previously unsolved games like Frogs-

and-Toads and Fox-and-Geese, we utilize parallel computing power in form of multiple

cores as available on modern central processing units (CPUs) and graphics processing units

(GPUs). We obtain an almost linear speedup with the number of CPU cores. Due to its much

larger number of cores, even better absolute speed-up are achieved on the GPU.

3

Contents

1 Introduction 5

2 Preliminaries 6

3 Bitvector State Space Search 8

3.1 Two-Bit Breadth-First Search . 8

3.2 One-Bit Reachability . 9

3.3 One-Bit Breadth-First Search . 10

3.4 Two-Bit Retrograde Analysis . 10

4 Hashing Permutation Games 14

4.1 Efficient Ranking and Unranking . 14

4.2 Sliding-Tile Puzzle . 16

4.3 Top-Spin Puzzle . 18

4.4 Pancake Problem . 19

5 Hashing Selection Games 20

5.1 Hashing with Binomial Coefficients . 22

5.2 Hashing with Multinomial Coefficients . 23

6 Parallelization 24

6.1 Multi-Core Computation . 25

6.2 GPU Computation . 26

7 Experiments 27

7.1 Permutation Games . 28

7.2 Selection Games . 29

8 Discussion 32

8.1 Symmetries . 35

8.2 Frontier Search . 35

8.3 Pattern Databases . 36

8.4 Other Games . 37

8.4.1 Permutation Games . 37

8.4.2 Selection Games . 37

8.5 General Games . 38

9 Conclusion 39

4

1 Introduction

Strong computer players for combinatorial games like Chess [6] have shown the impact of ad-

vanced AI search engines. For many games they play on expert and world championship level,

sometimes even better. Some games like Checkers [26] have been decided, in the sense that the

solvability status of the initial state has been computed. (The game is a draw, assuming optimal

play of both players.)

In this paper we consider solving a game in the sense of creating an optimal player for every

possible initial state in the input. This is achieved by computing the game-theoretical value of

each state, so that the best possible action can be selected by looking at all possible successor

states. In single-agent games the value of a game simply is its goal distance, while for two-player

games the value is the best possible reward assuming that both players play optimally.

Our approach is based on perfect hashing, where a perfect hash function is a one-to-one

mapping from a set of states to some set {0, . . . ,m − 1} for a sufficiently small number m.

Ranking maps a state to a number, while unranking reconstructs a state given its rank. One

application of ranking and unranking functions is to compress and decompress a state.

Provided the state space on disk, minimum perfect hash functions with a few bits per state

can be constructed I/O efficiently. Botelho et al. [4] devise minimal practical hash functions for

general state spaces, once the set of reachable states is known. The approach requires some small

constant number c of bits per state (typically, c ≈ 4). Of course, perfect hash functions do not

have to be minimal to be space-efficient. Non-minimal hash functions can outperform minimal

ones, since the gain in the constant number c of bits per state for the hash function can become

smaller than the loss in coverage.

We will see that for many search problems space-efficient perfect hash functions can be

constructed prior to executing the search. Sometimes it is even possible to devise a family of

perfect hash functions, one for each (forward or backward) search layer. We propose linear time

algorithms for invertible perfect hashing for a wide selection of AI search problems, including

• permutation games, i.e., games with distinguishable objects. In this class we find Sliding-

Tile puzzles with numbered tiles, as well as Top-Spin and Pancake problems. The parity of

a permutation will prove to be an important concept as it often allows to restrict the range

of the hash function to half.

• selection games, i.e., games with indistinguishable objects. In this class we find tile games

like Frogs-and-Trouts, as well as strategic games like Peg-Solitaire and Fox-and-Geese.

For analyzing the state space, we utilize a bitvector that covers the solvability information

of all possible states. Moreover, we apply symmetries to reduce the time- and space-efficiencies

of our algorithms. Besides the design of efficient perfect hash functions that apply to a wide

selection of games, one important contribution of the paper is to compute successors states on

multiple cores on the central processing unit (located on the motherboard) and on the graphics

processing unit (located on the graphics card).

This paper extends observations made in [14], where only permutation games have been con-

sidered, to a wider selection of state space problems. To the best of our knowledge, the only

5

attempts to use state space search on GPUs was by the authors of this paper in the context of

model checking [13, 3]. In [13] they improved large-scale disk-based model checking by shift-

ing complex numerical operations to the graphic card. As delayed elimination of duplicates is the

performance bottleneck, the authors performed parallel processing on the GPU to improve the

sorting speed significantly. Since existing GPU sorting solutions like Bitonic Sort and Quicksort

do not obey any speed-up on state vectors, they propose a refined GPU-based Bucket-Sort algo-

rithm. In [3] algorithms for parallel probabilistic model checking on GPUs were proposed. For

this purpose the authors exploit the fact that some of the basic algorithms for probabilistic model

checking rely on matrix vector multiplication. Since this kind of linear algebraic operations are

implemented very efficiently on GPUs, the new parallel algorithms achieve considerable runtime

improvements compared to their counterparts on standard architectures.

The paper is structured as follows. First, we provide preliminaries on perfect, invertible,

orthogonal hash functions, on permutation parity and move alternation properties. Then we study

constant-bit breadth-first search and constant-bit retrograde analysis. We discuss time-space

trade-offs using only one bit per state. Next, we address the design of efficient rank and unrank

functions for games with distinguishable and indistinguishable pieces, and adapt the algorithms

to a series of state space problems. In order to improve the running time for solving the problems,

we parallelize the classification algorithms. We show how to generate successors and how to rank

and unrank states on multiple CPU and GPU cores. We provide experimental data for solving

the games, discuss the results, and give some final concluding remarks.

2 Preliminaries

In the following, we formalize different characteristics of hash functions.

Definition 1 (Hash Function) A hash function h is a mapping of a universe U to an index set

{0, . . . ,m− 1}.

The set of reachable states S of a search problem is a subset of U , i.e., S ⊆ U . We are

interested in hash functions that are injective1.

Definition 2 (Perfect Hash Function) A hash function h : S → {0, . . . ,m−1} is perfect, if for

all s ∈ S with h(s) = h(s′) we have s = s′.

Definition 3 (Space Efficiency) The space efficiency of a hash function h : S → {0, . . . ,m−1}
is the proportion m/|S| of available hash values to states.

Given that every state can be viewed as a bitvector and interpreted as a number, one inefficient

design of a perfect hash function is immediate. The space requirements of the corresponding hash

table are usually too large. An space-optimal perfect hash function is bijective.

1A mapping is injective, if for all f(x) = f(y) we have x = y.

6

Definition 4 (Minimal Perfect Hash Function) A perfect hash function is minimal if its space

efficiency is equal to 1, i.e., if m = |S|.

Efficient and minimal perfect hash functions allow direct-addressing a bit-state hash table

instead of mapping states to an open-addressed or chained hash table. The computed index of

the direct access table uniquely identifies the state.

Whenever the averaged number of required bits per state for a perfect hash function is smaller

than the number of bits in the state encoding, an implicit representation of the search space is

fortunate, assuming that no other tricks like orthogonal hashing are applied.

Definition 5 (Orthogonal Hash Functions) Two hash functions h1 and h2 are orthogonal, if for

all states s, s′ with h1(s) = h1(s
′) and h2(s) = h2(s

′) we have s = s′.

In case of orthogonal hash functions h1 and h2, the value of h1 can, e.g., be encoded in the

file name, leading to a partitioned layout of the search space, and a smaller hash value h2 to be

stored explicitly.

Theorem 1 (Orthogonal Hashing imply Perfect One) If the two hash functions h1 : S →
{0, . . . ,m1 − 1} and h2 : S → {0, . . . ,m2 − 1} are orthogonal, their concatenation (h1, h2) is

perfect.

Proof. We start with two hash functions h1 and h2. Let s be any state in S. Given (h1(s), h2(s)) =
(h′1(s), h

′

2(s)) we have h1(s) = h1(s
′) and h2(s) = h2(s

′). Since h1 and h2 are orthogonal, this

implies s1 = s2. �

The other important property of a perfect hash function for a state space search is that the

state vector can be reconstructed given the hash value.

Definition 6 (Invertible Hash Function) A perfect hash function h is invertible, if given h(s),
s ∈ S can be reconstructed. The inverse h−1 of h is a mapping from {0, . . . ,m − 1} to S.

Computing the hash value is denoted as ranking, while reconstructing a state given its rank is

denoted as unranking.

For the exploration of the search space, in which array indices serve as state descriptors,

invertible hash functions are required.

For the design of minimal perfect hash functions in permutation games, parity will be a

helpful concept.

Definition 7 (Inversion) An inversion in a permutation π = (π1, . . . , πn) is a pair (i, j) with

1 ≤ i < j ≤ n and πi > πj .

Definition 8 (Parity) The parity of the permutation π is defined as the parity (mod 2 value) of

the number of inversions in π,

7

Definition 9 (Parity Preservation) A permutation game is parity-preserving, if all moves pre-

serve the parity of the permutation.

Parity-preservation allows to separate solvable from insolvable states in several permutation

games. If the parity is preserved, the state space can be compressed. For this case we have

|S| = n!/2.

Definition 10 (Move Alternation Property) A property p : S → N is move-alternating, if the

parity of p toggles for all actions, i.e., for all s and s′ ∈ succs(s) we have

p(s′) mod 2 = (p(s) + 1) mod 2.

As a result, p(s) is the same for all states s in one BFS layer. In a mixed representation of

two subsequent layers, states s′ in the next BFS layer can be separated by knowing p(s′) 6= p(s).
One example for a move-alternation property is the position of the blank in the Sliding-Tile

puzzle. Moreover, many pattern database heuristics [9] have the property either to increase or to

decrease by 1 with each applied action.

3 Bitvector State Space Search

As indicated above, perfect hash functions are injective mappings of the set of reachable states

to a set of available indices. They are invertible, if the state can be reconstructed given the index.

Cooperman and Finkelstein [8] showed that, given a perfect and invertible hash function, two

bits per state are sufficient to perform a complete breadth-first exploration of the search space.

3.1 Two-Bit Breadth-First Search

Two-bit breadth-first has first been used to enumerate so-called Cayley Graphs [8]. As a subse-

quent result the authors proved an upper bound to solve every possible configuration of Rubik’s

Cube [23]. By performing a breadth-first search over subsets of configurations in 63 hours to-

gether with the help of 128 processor cores and 7 Tera bytes of disk space it was shown that

26 moves always suffice to rescramble it. Korf [20] has applied the two-bit breadth-first search

algorithm to generate the state spaces for hard instances of the Pancake problem I/O-efficiently.

In the two-bit breadth-first search algorithm (shown in Algorithm 1) every state is expanded

at most once. The two bits encode values in {0, . . . , 3} with value 3 representing an unvisited

state, and values 0, 1, or 2 denoting the current search depth mod 3. This allows to distinguish

generated and visited states from ones expanded in the current breadth-first layer.

The running time is determined by the size of the search space times the maximum breadth-

first search layer (times the efforts to generate the children).

8

Algorithm 1 Two-Bit-Breadth-First-Search(m, init)

1: for all i := 0, . . . ,m− 1 do

2: BFS-Layer[i] := 3
3: BFS-Layer[rank(init)] := level := 0
4: while BFS-Layer has changed do

5: level := level + 1
6: for all i := 0, . . . ,m− 1 do

7: if BFS-Layer[i] = (level− 1) mod 3 then

8: succs := expand(unrank(i))
9: for all s ∈ succs do

10: if BFS-Layer[rank(s)] = 3 then

11: BFS-Layer[rank(s)] := level mod 3

Algorithm 2 One-Bit-Reachability (m, init)

1: for all i := 0, . . . ,m− 1 do

2: Open[i] := false

3: Open[rank(init)] = true

4: while Open has changed do

5: i := 0, . . . ,m− 1
6: if Open[i] = true then

7: succs := expand(unrank(i))
8: for all s ∈ succs do

9: Open[rank(i)] := true

3.2 One-Bit Reachability

Are two bits the best possible compaction for computing the set of all reachable states? Yes

and no. The procedure shown in Algorithm 2 illustrates that it is possible to generate the entire

state space using one bit per state. However, as it does not distinguish between states to be ex-

panded next (open states) and states already expanded (closed states), the algorithm may expand

a state multiple times. Nonetheless, the algorithm is able to determine reachable states. Addi-

tional information extracted from a state can improve the running time by decreasing the number

of states to be reopened.

If the successor’s rank is smaller than the rank of the actual one, it will be expanded in the

next scan, otherwise in the same. This observation leads to the following result.

Theorem 2 (Number of Scans in One-Bit Reachability) The number of scans in the algorithm

One-Bit-Reachability is bounded by the maximum number of BFS layers.

Proof. Let Layer(i) be the BFS-layer of a state with rank i and Scan(i) be the layer in the

algorithm One-Bit-Reachability. Evidently, Scan(rank(init)) = Layer(rank(init)) = 0. For

any path (s0, . . . , sd) generated by BFS, we have Scan(rank(sd−1)) ≤ Layer(rank(sd−1)) by

induction hypothesis. All successors of sd−1 are generated in the same iteration (if their index

9

value is larger than i) or in the next iteration (if their index value is smaller than i) such that

Scan(rank(sd)) ≤ Layer(rank(sd)). �

3.3 One-Bit Breadth-First Search

For some domains, one bit per state suffices for performing breadth-first search [14]. In Peg-

Solitaire, the number of remaining pegs uniquely determine the breadth-first search layer, so that

one bit per state suffices to distinguish newly generated states from expanded one. This saves

space compared to the more general two-bit breadth-first search routine.

In the event of a move-alternation property alternation, we, therefore, can perform breadth-

first search using only one bit per state.

Algorithm 3 One-Bit-Breadth-First-Search (m, init)

1: for i = 0, . . . , m− 1 do

2: Open[i] := false

3: Open[rank(init)] := true

4: level := 0
5: while Open has changed do

6: for all i with Open[i] = true do

7: s := unrank(i)
8: if alternation(s) = level mod 2 then

9: succs := expand(unrank(i))
10: for all s′ ∈ succs do

11: Open[rank(s′)] := true

12: level = level + 1

One important observation is that not all visited states that appear in previous BFS layers are

removed from the current search layer. So there are states that are reopened, in the worst case

once for each BFS layer. Even though some states may be expanded several times, the following

result is immediate.

Theorem 3 (Population Count One-Bit-BFS) Let the population count pcl be the number of

bits set after the l-th scan in Algorithm One-Bit-BFS. Then the number of states in BFS-level l is

|Layerl| = pcl − pcl−1.

If we were able to store the set of reached states on disk, we could subtract the set of reached

states. This, however, would imply that the algorithm no longer consumes one bit per state.

3.4 Two-Bit Retrograde Analysis

Retrograde analysis classifies the entire set of positions in backward direction, starting from won

and lost terminal ones. Moreover, partially completed retrograde analyses have been used in

conjunction with forward-chaining game playing programs to serve as endgame databases.

10

Large endgame databases are usually constructed on disk for an increasing number of pieces.

Since captures are non-invertible moves, a state to be classified refers only to successors that

have the same number of pieces (and thus are in the same layer), and to ones that have a smaller

number of pieces (often only one less).

The retrograde analysis algorithm works for all games with this property. In detail: all games,

where the game positions can be divided into different layers, and the layers are ordered in such

a way that movements are only possible in between a layer or from a higher layer to a lower one.

Additional state information indicating the player to move, retrograde analysis for zero-sum

games requires 2 bits per state for executing the analysis on a bitvector representation of the

search space: denoting if a state is unsolved, if it is a draw, if it is won for the first, or if it is won

for the second player.

Bit-state retrograde analysis applies backward BFS starting from the states that are already

decided. Algorithm 4 shows an implementation of the retrograde analysis in pseudo code. For

the sake of simplicity, in the implementation we look at two-player zero-sum games that have no

draw. (For including draws, we would have to use the unused value 3, which shows, that two bits

per state are still sufficient.) Based on the players’ turn, the state space is in fact twice as large as

the mere number of possible game positions. The bits for the first player and the second player

to move are interleaved, so that it can be distinguished by looking at the mod 2 value of a state’s

rank.

Under this conditions it is sufficient to do the lookup in the lower layers only once during the

computation of each layer. Thus the algorithm is divided into three parts. First an initialization

of the layer (lines 4 to 8), here all positions that are won for one of the players are marked, a 1
stands for a victory of player one and a 2 for one of player two. Second a lookup of the successors

in the lower layer (lines 9 - 18) is done, and at last an iteration over the remaining unclassified

positions is done in lines 19 - 34. In the third part it is sufficient to consider only successors in

the same file.

In the second part a position is marked as won if it has a successor that is won for the player to

move, here (line 10) even(i)checks who is the active player. If there is no winning successor

the position remains unsolved. Even if all successors in the lower layer are lost, the position

remains unsolved. A position is marked as lost only in the third part of the algorithm, because

not until then it is known how all successors are marked. If there are no successors in the third

part, then the position is also marked as lost, because it has either only loosing successors in the

lower layer, or no successor at all.

In the following it is shown that the algorithm indeed behaves as it is asserted. A winning

strategy means that one player can win from a given position no matter how the other player

moves.

Theorem 4 A state is marked as won if and only if there exists a winning strategy for this state.

A state is marked as lost if and only if it is either a winning situation for the opponent, or all

successors are marked as won for the opponent.

Proof. The proof is done with induction over the length of the longest possible path, that is

the maximal number of moves to a winning situation. As only two-player zero-sum games are

11

Algorithm 4 Two-Bit-Retrograde(m, lost, won)

1: for all i := 0, . . . ,m− 1 do

2: Solved[i] := 0
3: for all i := 0, . . . ,m− 1 do

4: if won(rank(i)) then

5: Solved[i] := 1
6: if lost(rank(i)) then

7: Solved[i] := 2
8: if Solved[i] = 0 then

9: succs-smaller := expand-smaller(unrank(i))
10: if even(i) then

11: for all s ∈ succs-smaller do

12: if Solved[rank-smaller(s)] = 2 then

13: Solved[rank(i)] := 2
14: else

15: for all s ∈ succs-smaller do

16: if Solved[rank-smaller(s)] = 1 then

17: Solved[rank(i)] := 1
18: while (Solved has changed) do

19: for all i := 0, . . . ,m− 1 do

20: if Solved[i] = 0 then

21: succs-equal := expand-equal(unrank(i))
22: if even(i) then

23: allone := true

24: for all s ∈ succs-equal do

25: if Solved[rank(s)] = 2 then

26: Solved[rank(i)] := 2
27: allone := allone & (Solved[rank(s)] = 1)
28: if allone then

29: Solved[rank(i)] := 1
30: else

31: alltwo := true

32: for all s ∈ succs-equal do

33: if Solved[rank(s)] = 1 then

34: Solved[rank(i)] := 1
35: alltwo := alltwo & (Solved[rank(s)] = 2)
36: if alltwo then

37: Solved[rank(i)] := 2

considered a game is lost for one player if it is won for the opponent, and as the turns of both

players alternate the two statements must be shown together.

The algorithm marks a state with 1 if it assumes it is won for player one and with 2 if it

12

assumes it is won for player two. Initially all positions with a winning situation are marked

accordingly, therefore for all paths of length 0 it follows that a position is marked with 1, 2, if

and only if it is won for player one, two, respectively. Thus for both directions of the proof the

base of the induction holds.

The induction hypothesis for the first direction is as follows:

For all non-final states x with a maximal path length of n− 1 it follows that:

1. If x is marked as 1 and player one is the player to move, then there exists a winning strategy

for player one.

2. If x is marked as 2 and player one is the player to move, then all successors of x are won

for player two.

3. If x is marked as 2 and player two is the player to move, then there exists a winning strategy

for player two.

4. If x is marked as 1 and player two is the player to move, then all successors of x are won

for player one.

Without loss of generality player one is the player to move, the cases for player two are done

accordingly.

So assume that x is marked as 1 and the maximal number of moves from position x are n.

Then there exists a successor of x, say x′, that is also marked as 1. There are two cases how a

state can be marked as 1, x′ is in a lower layer (lines 17,18)or in the same layer (lines 32,33).

In both cases the maximal number of moves from x′ is less than n, therefore with the induction

hypothesis it follows that all successors of x′ are won for player one, therefore there is a winning

strategy for player one starting from state x.

Otherwise, if a state x is marked as 2 and the maximal number of moves from position x
are n, then there is only one possible way how x was marked by the algorithm (line 34), and

it follows that all successors of x are marked with 2, too. Again it follows with the induction

hypothesis that there exists a winning strategy for all successors of x, and therefore they are won

for player two.

Together the assumption follows.

The other direction is done quite similar, here from a winning strategy it follows almost

immediately that a state is marked.

For all paths of length less than n from a state x it follows that:

1. If there exists a winning strategy for player one and player one is the player to move, then

x is marked as 1.

2. If all successors of x are won for player two and player one is the player to move, then x
is marked as 2.

3. If there exists a winning strategy for player two and player two is the player to move, then

x is marked as 2.

13

4. If all successors of x are won for player one and player two is the player to move, then x
is marked as 1.

Assume that the maximal path length from a state x is n. If there exists a winning strategy for

player one from x, then this strategy states a successor x′ of x such that all successors of x′ are

won for player one, or x′ is a winning situation for player one. In both cases it follows that x′ is

marked with 1 and therefore x is marked with 1 as well (line 17 or 34).

On the other hand if all successors of x are won for player two. The successors in the lower

layer do not effect the value of x because only winning successors change it (lines 16, 17). In

line 31 alltwo is set to true and as long as there are only loosing successors which are marked

with 2 by induction hypothesis, it stays true, and therefore x is marked with 2 in line 37, too.

�

The algorithm and the theorem can be extended to games with draws by only slightly mod-

ifying them, as mentioned above the value 3 can be used to indicate a draw. The problem with

a draw is, that it depends on the game how and when it is a draw. Also note that this theorem

does not show, that the algorithm always marks all states, because in certain games it is possi-

ble to have infinite sequences of moves, and different games have different conditions for this

infiniteness; Some leading to draws or preventing cycles by demanding that no game position

may occur twice. For these special situations the so called history problem needs to be solved

for each game individually.

4 Hashing Permutation Games

In the sequel of this paper, we study efficient perfect hash functions for fast ranking and unrank-

ing. We will also look at hash functions that are adapted to the BFS layer.

4.1 Efficient Ranking and Unranking

For ranking and unranking permutations, time- and space-efficient algorithms have already been

designed [2].

Definition 11 (Natural or Lexicographic Rank) The natural or lexicographic rank of a per-

mutation is the position in the lexicographic order of its state vector representation. In the

lexicographic ordering of a permutation π = (π0, . . . , πn−1) of {0, . . . , n − 1} we first have

(n!− 1) permutations that begin with 0, followed by (n!− 1) permutations that begin with 1, etc.

Threfore, we have

π0 · (n− 1)! ≤ lex-rank(π, n) ≤ π0 · (n− 1)!.

This leads to the following recursive formula: lex-rank((0), 1) = 0 and

lex-rank(π, n) ≤ π0 · (n− 1)! + lex-rank(π′, n− 1),

where π′i = πi+1 if π′i > π0 and π′i = πi if π′i < π0.

14

The following result is widely known [2].

Theorem 5 (Inverted Index, Factorial Base) The lexicographic rank of permutation π (of size

n) is determined as lex-rank(π, n) =
∑N−1

i=0
di · (N − 1 − i)! where the vector d of coefficients

di is called the inverted index or factorial base. The coefficients di are uniquely determined. The

parity of a permutation is known to match (
∑N−1

i=0
di) mod 2.

In the recursive definition of lex-rank the derivation of π′ from π creates a burden that makes

an according ranking algorithm non-linear. There have been many attempts, e.g. by Trotter

and Johnson’s minmal-exchange approach, which still have a non-linear time complexity in the

worst-case [22].

Korf and Schultze [21] use two lookup tables with a space requirement of O(2n log n) bits to

compute lexicographic ranks in linear time. More crucially, given that larger tables do not fit into

SRAM, the algorithms does not work well on the GPU. Bonet [2] discusses time-space trade-offs

and provides a uniform algorithm that takes O(n log n) time and O(n) space. Algorithms that

are linear in time and space for both operations are not known.

Given that existing ranking and unranking algorithms wrt. the lexicographic ordering are

rather slow in particular if executed on the graphics card, next we have a detailed look at the

more efficient ordering of Myrvold and Ruskey [24]. They devise another ordering based on

the observation that every permutation can be generated uniformly by swapping an element at

position i with a randomly selected element j > i, while i continously increases. The sequence

of j’s can be seen as the equivalent to the factorial base for the lexicographic rank.

We show that the parity of a permuation can be derived on-the-fly in the unranking algorithm

proposed by Myrvold and Ruskey2. For fast execution on the graphics card, we additionally

avoid recursion.

The ranking algorithm is shown in Algorithm 5. The input is the number of elements N to

permute, the permutation π, and its inverse permutation π−1. The output is the rank of π. As

a side effect, we have that both π and π−1 are modified. The unranking algorithm is shown in

Alg. 6.

Algorithm 5 rank(n, π, π−1)

1: for all i in {1, . . . , n− 1} do

2: l ← πn−i

3: swap(πn−i, ππ−1

n−i

)

4: swap(π−1

l , π−1

n−i)
5: ranki ← l
6: return

∏n−1

i=1
(rankn−i+1 + i)

Theorem 6 (Parity in Myrvold & Ruskey’s Unrank Function) The parity of a permutation for

a rank r in Myrvold & Ruskey’s permutation ordering can be computed on-the fly with the unrank

function shown in Algorithm 6.

2In all our results, we refer to Myrvold and Ruskey’s rank1 and unrank1 functions.

15

Algorithm 6 unrank(r)

1: π := id

2: parity := false

3: while n > 0 do

4: i := n− 1
5: j := r mod n
6: if i 6= j then

7: parity := ¬parity

8: swap(πi, πj)
9: r := r div n

10: n := n− 1
11: return (parity, π)

Proof. In the unrank function swapping two elements u and v at position i and j, resp., with

i 6= j we count 2(j − i − 1) + 1 transpositions (u and v are the elements to be swapped, x is a

wildcard for any intermediate element): uxx . . . xxv → xux . . . xxv → . . . → xx . . . xxuv →
xx . . . xxvu → . . . → vxx . . . xxu. As 2(j − i − 1) + 1 mod 2 = 1, each transposition either

increases or decreases the parity of the number of inversions, so that the parity toggles for each

iteration. The only exception is if i = j, where no change occurs. Hence, the parity of the

permutation can be determined on-the-fly in our algorithm.

�

Theorem 7 (Folding Permutation Table in Myrvold & Ruskey’s Approach) Let π(r) denote

the permutation returned by Myrvold & Ruskey’s unrank function given index r. Then π(r)
matches π(r + n!/2) except for swapping π0 and π1.

Proof. The last call to swap(πn−1, πr mod n
) in Myrvold and Ruskey’s unrank function is

swap(π0, πr mod 1
), which resolves to either swap(π1, π1) or swap(π1, π0). Only the latter one

induces a change.

If r1, . . . , rn−1 denote the indices of r mod n in the iterations 1, . . . , N − 1 of Myrvold and

Ruskey’s unrank function, then rN−1 = ⌊. . . ⌊r/(n−1)⌋ . . . /2⌋, which resolves to 1 for r ≥ n!/2
and 0 for r < n!/2. �

4.2 Sliding-Tile Puzzle

Next, we consider permutation games, especially the ones shown in Fig. 1.

The (n × m) sliding-tile puzzle [17] consists of (nm − 1) numbered tiles and one empty

position, called the blank. In many cases, the tiles are squarely arranged, such that m = n.

The task is to re-arrange the tiles such that a certain goal arrangement is reached. Swapping

two tiles toggles the permutation parity and, in turn, the solvability status of the game. Thus,

only half the nm! states are reachable.

16

a)
13

1 2 3 4 5 6

7 8 9 10 11 12

b)

13

6
7

8

14
1516

17

18

19

1

2

3

4

5

10

9

12

11

c)

Figure 1: Permutation Games: a) Sliding-Tile Puzzle, b) Top-Spin Puzzle, c) Pancake Problem.

For the Sliding-Tile puzzle, we observe that in a lexicographic ordering every two adjacent

permutations with lexicographic rank 2i and 2i + 1 have a different solvability status. In order

to hash a sliding-tile puzzle state to {0, . . . , (nm)!/2 − 1}, we can, therefore, compute the lex-

icographic rank and divide it by 2. Unranking is slightly more complex, as it has to determine,

which of the two permutations π2i and π2i+1 of the puzzle with index i is actually reachable.

There is one subtle problem with the blank. Simply taking the parity of the entire board does

not suffice to compute a minimum perfect hash value in {0, . . . , nm!/2}, as swapping a tile with

the blank is a move, which does not change the parity.

A solution to this problem (shown in Algorithm 7) is to partition the state space wrt. the

position of the blank, since for exploring the (n × m) puzzle it is equivalent to enumerate all

(nm− 1)!/2 orderings together with the nm positions of the blank. If S0, . . . , Snm−1 denote the

set of “blank-projected” partitions, then each set Sj , j ∈ {0, . . . , nm− 1} contains (nm− 1)!/2
states. Given the index i as the permutation rank and j it is simple to reconstruct the puzzle’s

state.

As a side effect of this partitioning, horizontal moves of the blank do not change the state

vector, thus the rank remains the same. Tiles remain in the same order, preserving the rank.

Since the parity does not change in this puzzle we need another move alternating property,

and find it in the position of the blank. The partition into buckets S0, . . . , Snm−1 has the additional

advantage that we can determine, whether the state belongs to an odd or even layer and which

bucket a successor belongs to [27]. We observe that in puzzles with an odd number of columns

at an even breadth-first level the blank position is even and at an odd breadth-first level the blank

17

Algorithm 7 One-Bit-Breath-First-Search-Sliding-Tile (init)

1: for blank = 0, . . . , nm− 1 do

2: for i = 0, . . . , (nm− 1)!/2− 1 do

3: Open[blank][i] := false

4: Open[blank(init)][rank(init) mod (nm− 1)!/2] := true

5: level := 0
6: while Open has changed do

7: blank := level mod 2
8: while blank ≤ nm do

9: for all d ∈ {R, L,D,U} do

10: dst := newblank(blank, d)
11: if d ∈ {L, R} then

12: Open[dst] := Open[dst] ∨ Open[blank]
13: else

14: for all i with Open[blank][i] = true do

15: (valid, π) := unrank(i)
16: if ¬valid then

17: swap(π0, π1)
18: succ := expand(π, d)
19: r := rank(succ) mod (N − 1)!/2
20: Open[dst][r] := true

21: blank = blank + 2
22: level = level + 1

position is odd.

For such a factored representation of the sliding-tile puzzles, a refined exploration in Algo-

rithm 3 retains the breadth-first order, by means that a bit for a node is set for the first time in its

BFS layer. The bitvector Open is partitioned into nm parts, which are expanded depending on

the breadth-first level (line 7).

As mentioned above, the rank of a permutation does not change by a horizontal move of

the blank. This is exploited in line 11 writing the ranks directly to the destination bucket using

a bitwise-or on the bitvector from layer level − 2 and level. The vertical moves are unranked,

moved and ranked from line 13 onwards. When a bucket is done, the next one is skipped and the

next but one is expanded. The algorithm terminates when no new successor is generated.

4.3 Top-Spin Puzzle

The next example is the (n, k)-Top-Spin Puzzle [7], which has n tokens in a ring. In one twist

action k consecutive tokens are reversed and in one slide action pieces are shifted around. There

are n! different possible ways to permute the tokens into the locations. However, since the puzzle

is cyclic only the order of the different tokens matters and thus there are only (n − 1)! different

states in practice. After each of the n possible actions, we thus normalize the permutation by

18

cyclically shifting the array until token 1 occupies the first position in the array.

Theorem 8 (Parity in Top-Spin Puzzle) For an even value of k (the default) and odd value of

n > k + 1, the (normalized) (n, k) Top-Spin Puzzle has (n− 1)!/2 reachable states.

Proof. We first observe that due to the normalization for an even value of k, only a twist at the

start/end of the normalized array can change the parity. Otherwise, the twist involves reversing

k adjacent numbers, an operation with even parity.

Let n = 2m + 1 and (x0, x1, . . . , x2m) be the normalized state vector. Thus, due to normal-

ization, x0 = 0.

First of all, we observe that the modification of 0 is not counted as a transposition in the

normalized representation, so only k − 1 elements actually change their relative position and

lead to an odd number of transpositions.

Without loss of generality, we look at k = 4, which simplifies notation. Larger values of k
only increase the number of cases, but lead to no further insight. Assuming k = 4, three elements

change their relative position and lead to three transpositions.

We now look at the effect of normalization. For (0, x1, x2, x3, . . . , x2m) we have four critical

successors:

• (x3, x2, x1, 0, x4....x2m),

• (x2, x1, 0, x2m, x3, ..., x2m−1),

• (x1, 0, x2m−1, x2m, x2, ..., x2m−2), and

• (0, x2m−2, x2m−1, x2m, x1, ..., x2m−3).

In all cases, normalization has to move 3 elements either the ones with low index to the end

of the array to postprocess the twist, or the ones with large indices to the start of the array to

preprocess the operation. The number of transpositions for one such move is 2m− 1. In total we

have 3(2m− 1) + 3 transpositions. As each transposition changes the parity and the total of 6m
transpositions is even, all critical cases have even priority. �

As the parity is even for a move in the (normalized) (n, k) Top-Spin Puzzle for an odd value

of n > k + 1, we obtain the entire set of (n− 1)! reachable states.

4.4 Pancake Problem

The n-Pancake Problem [10] is to determine the number of flips of the first k pancakes (with

varying k ∈ {1, . . . , n}) necessary to put them into ascending order. The problem has been

analyzed e.g. by [16]. It is known that (5n + 5)/3 flips always suffice, and that 15n/14 flips are

necessary.

In the n-Burned-Pancake variant, the pancakes are burned on one side and the additional

requirement is to bring all burned sides down. For this version it is known that 2n − 2 flips

always suffice and that 3n/2 flips are necessary. Both problems have n possible operators. The

19

pancake problem has n! reachable states, the burned one has n!2n reachable states. For an even

value of ⌈(k − 1)/2⌉, k > 1 the parity changes, while for an odd one, the parity remains the

same.

5 Hashing Selection Games

Figure 2: Initial States of the Two-Player Turn-Taking Game Fox-and-Geese.

Fox-and-Geese is a two-player zero-sum game. The lone fox attempts to capture the geese,

while the geese try to hem the Fox, so that he can’t move. It is played upon a cross-shaped board

consisting of a 3× 3 square of intersections in the middle with four 2× 3 areas adjacent to each

face of the central square. One board with the initial layout is shown in Fig. 2. Pieces can move

to any empty intersection around them (also diagonally). The fox can additionally jump over a

goose to capture it. Geese cannot jump. The geese win if they surround the fox so that it cannot

move. The fox wins if it captures enough geese that the remaining geese cannot surround him.

Fox-and-Geese belongs to the set of asymmetric strategy games played on a cross shaped

board. The first probable reference to an ancestor of the game is that of Hala-Tafl, which is

mentioned in an Icelandic saga and which is believed to have been written in the 14th century3.

To the authors’ knowledge, Fox-and-Geese has not been solved yet. The chances for 13 geese

are assumed to be an advantage for the fox, while for 17 geese the chances are assumed to be

roughly equal.

The game requires a strategic plan and tactical skills in certain battle situations. The portions

of tactic and strategy are not equal for both players, such that a novice often plays better with

the fox than with the geese. A good fox detects weaknesses in the set of goose (unprotected

ones, empty vertices, which are central to the area around) and moves actively towards them.

3see The Online Guide to Traditional Games

20

Potential decoys, which try to lure the fox out of his burrow have to be captured early enough.

The geese have to work together in form of a swarm and find a compromise between risk and

safety. In the beginning it is recommended to choose safe moves, while to the end of the game it

is recommended to challenge the fox to move out in order to fill blocked vertices.

Figure 3: Initial State of the Single-Player Game Peg-Solitaire.

Fox-and-Geese extends Peg-Solitaire (see Fig. 3), a single-agent problem invented in the 17th

century. The game asks for the minimum number of pegs that is reachable from a given initial

state. The set of pegs is iteratively reduced by jumps. Solutions for the initial state (shown in

Fig. 3) with one peg remaining in the middle of the board are widely known [1]. An optimal

player for all possible states has been generated by [12].

Figure 4: Initial State of the Single-Player Game Fore and Aft.

21

The Fore and Aft puzzle (see Fig. 4) has been made popular by the American puzzle creator

Sam Loyd. It is played on a part of the 5×5 board consisting of two 3×3 subarrays at diagonally

opposite corners. They overlap in the central square. One square has 8 black pieces and the other

has 8 white pieces, with the centre left vacant. The objective is to reverse the positions of pieces

in the lowest number of moves. Pieces can slide or jump over another pieces of any colour. This

game was originally an English invention, having been designed by an English sailor in the 18th

century. Henry Ernest Dudeney discovered a quickest solution of just 46 moves. Frogs-and-

Toads generalizes Fore and Aft and larger versions are yet unsolved.

As the number of pegs shows the progress in playing the game Peg-Solitaire, we may aim at

representing all boards with k of the n−1 possible pegs, where n is the number of holes. In fact,

the breadth-first level k contains at most
(

n

k

)

states. In contrast to permutation games, pegs are

indistinguishable, and call for a different design of a hash function and its inverse.

Such an invertible perfect hash function of all states that have k = 1, . . . , n pegs remaining

on the board reduces the RAM requirements for analyzing the game. As successor generation

is fast, we will need an efficient hash function (rank) that maps bitvectors (s0, . . . , sn−1) ∈
{0, 1}n with k ones to {0, . . . ,

(

n

k

)

− 1} and back (unrank). There is a trivial ranking algorithm

that uses a counter to determine the number of bitvectors passed in their lexicographic ordering

that have k ones. It uses linear space, but the time complexity by traversing the entire set of

bitvectors is exponential. The unranking algorithm works similarly with matching exponential

time performance.

The design of a linear time ranking and unranking algorithm is not obvious. The pieces on

the board are not labeled, their relative ordering does not matter.

5.1 Hashing with Binomial Coefficients

An efficient solution for perfect and invertible hashing of all bitvectors with k ones to {0, . . . ,
(

n

k

)

−
1} is shown in Algorithms 8 and 9. The algorithms utilize binomial coefficients that can either

be precomputed or determined on-the-fly. The algorithms rely on the observation that once a

bit at position i in a bitvector with n bits and with j zeros is processed, the binomial coefficient
(

i

j−1

)

can be added to the rank. The notation max
{

0,
(

i

zeros−1

)

}

is shorthand notation to say, if

zeros < 1 take 0, otherwise take
(

i

zeros−1

)

.

The time complexities of both algorithms are O(n). In case the number of zeros exceeds

the number of ones, the rank and unrank algorithms can be extended to the inverted bitvector

representation of a state.

The correctness argument is based on representing of the binomial coefficients in a grid graph

of nodes Bi,j with i denoting the position in the bit-vector and j denoting the number of zeros

already seen. Let Bi,j be connected via a directed edge to Bi−1,j and Bi−1,j−1 corresponding

to a zero and an one processed in the bit-vector. Starting at Bi,j there are
(

i

j

)

possible non-

overlapping paths that reach B0,z. These pathcount-values can be used to determine the index of

a given bitvector in the set of all possible ones. At the current node (i, j) in the grid graph in case

of the state at position i containing a

• 1: all path-counts at Bi−1,j−1 are added.

22

Algorithm 8 Ranking-Binomial-Coefficients(s, ones)

1: r := 0; i := n; zeros := n− ones

2: while (i > 0) do

3: i := i− 1
4: if (s[i] = 0) then

5: zeros := zeros− 1
6: else

7: value0 := max
{

0,
(

i

zeros−1

)

}

8: r := r + value0

9: return r

Algorithm 9 Unranking-Binomial-Coefficients(r, n, ones)

1: i := n; zeros := n− ones

2: while (i > 0) do

3: i := i− 1

4: value0 := max
{

0,
(

i

zeros−1

)

}

5: if (r < value0) and (zeros > 0) then

6: zeros := zeros− 1
7: record s[i] := 0
8: else

9: record s[i] := 1
10: r := r − value0

11: return s

• 0: nothing is added.

5.2 Hashing with Multinomial Coefficients

The perfect hash functions derived for games like Peg-Solitaire are often insufficient in games

with pieces of different color like Tic-Tac-Toe and Nine-Men-Morris. For this case, we have to

devise a hash function that operates on state vectors of size n that contain zeros (location not

occupied), ones (location occupied by pieces of the first player) and twos (location occupied by

pieces of the second player). We will determine the value of a position by hashing all state with

a fix number of z zeros, and o ones and t = n − z − o twos to a value in {0, . . . ,
(

n

z,o,t

)

− 1},

where the multinomial coefficient
(

n

z,o,t

)

is defined as

(

n

z, o, t

)

=
n!

z! · o! · t!
.

The implementations of the rank and unrank functions are shown in Algorithms 10 and 11.

They naturally extend the code derived for binomial coefficients.

23

Algorithm 10 Ranking-Multinomial-Coefficients(s, n, ones, twos)

1: r := 0; zeros := n− ones− twos; i := n
2: while (i > 0) do

3: i := i− 1
4: if (s[i] = 0) then

5: zeros := zeros− 1
6: else

7: if s[i] = 1 then

8: value0 := max
{

0,
(

i

zeros−1,ones,i−zeros−ones−1

)

}

9: r := r + value0

10: ones := ones− 1
11: else

12: value0 := max
{

0,
(

i

zeros−1,ones,i−zeros−ones−1

)

}

13: value1 := max
{

0,
(

i

zeros,ones−1,i−zeros−ones−1

)

}

14: r := r + value0 + value1

15: return r

The correctness argument relies on representing the multinomial coefficients in a 3D grid

graph of nodes Bi,j,l with i denoting the index position in the vector and j denoting the number of

zeros j, and l denoting the number of ones already seen. The number of twos is then immediate.

Let Bi,j,l be connected via a directed edge to Bi−1,j,l, Bi−1,j,l−1 and Bi−1,j−1,l corresponding to

a value 2, 1 or 0 processed in the bit-vector, respectively. There are
(

i

j,l,n−j−l

)

possible non-

overlapping paths starting from each node Bi,j,l that reach B0,z,o. These pathcount-values can be

used to determine the index of a given bitvector in the set of all possible ones. At the current

node (i, j, l) in the grid graph in case of the node at position i containing a

• 1: all path-counts values at Bi−1,j−1,l are added.

• 2: all path-counts values at Bi−1,j,l−1 are added.

• 0: nothing is added.

6 Parallelization

Parallel processing is the future of computing. On current personal computer systems with mul-

tiple cores on the CPU and (graphics) processing units on the graphics card, parallelism is avail-

able “for the masses”. For our case of solving games, we aim at fast successor computation.

Moreover, ranking and unranking take substantial running time are executed in parallel.

To improve the I/O behavior the partitioned state space was distributed over multiple hard

disks. This increased the reading and writing bandwidth and to enable each thread to use its own

hard disk. In larger instances that exceed RAM capacities we additionally maintain write buffers

24

Algorithm 11 Unranking-Multinomial-Coefficients(r, n, ones, twos)

1: i := n; zeros := n− ones− twos

2: while i > 0 do

3: i := i− 1

4: value0 := max
{

0,
(

i

zeros−1,ones,i−zero−ones−1

)

}

5: value1 := max
{

0,
(

i

zeros,ones−1,i−zero−ones−1

)

}

6: if (r < value0) and (zeros > 0) then

7: zeros := zeros− 1
8: record s[i] := 0
9: else

10: if (r < value0 + value1) and (ones > 0) then

11: ones := ones− 1
12: record s[i] := 1
13: r := r − value0

14: else

15: record s[i] := 2
16: twos := twos− 1
17: r := r − value0 − value1

18: return s

to avoid random access on disk. Once the buffer is full, it is flushed to disk. In one streamed

access, all corresponding bits are set.

6.1 Multi-Core Computation

Nowadays computers have multiple cores, which reduce the run-time of an algorithm via distri-

bution the workload to concurrently running threads.

We use pthreads as additional multi-threading support.

Let Sp be the set of all possible positions in Fox-and-Geese (Frogs-and-Toads) with p pieces,

which together with the fox (blank) position and the player’s turn uniquely address states in the

game. During play, the number of pieces decreases (or stays) such that we partition backward

(forward) BFS layers into disjoint sets Sp = Sp,0 ∪ . . .∪Sp,n−1. As |Sp,i| ≤
(

n−1

p

)

is constant for

all i ∈ {0, . . . , n− 1}, a possible upper bound on the number of reachable states with p pieces is

n ·
(

n−1

p

)

. These states will be classified by our algorithm.

In two-bit retrograde (bfs) analysis all layers Layer0, Layer1, . . . are processed in partition

form. The fixpoint iteration to determine the solvability status in one backward (forward) BFS

level Layerp = Sp,0 ∪ . . . ∪ Sp,n−1 is the most time consuming part. Here, we can apply a multi-

core parallelization using pthreads. In total, n threads are forked and joined after completion.

They share the same hash function, and communicate for termination.

For improving space consumption we urge the exploration to flush the sets Sp,i whenever

25

Texture Processor Cluster 1 T
ex

tu
re

P
ro

cesso
r

C
lu

sters
2

...1
0

Global memory

Streaming

Multiprocessor 1

sh
a
red

m
em

o
ry

Streaming

Processors

Streaming

Multiprocessor 2

sh
a
red

m
em

o
ry

Streaming

Processors

Streaming

Multiprocessor 3
sh

a
red

m
em

o
ry

Streaming

Processors

special function unit 2

special function unit 1

special function unit 2

special function unit 1

special function unit 2

special function unit 1

Figure 5: Sample GPU Architecture (G200 Chipset).

possible and to load only the ones needed for the current computation. In the retrograde analysis

of Fox-and-Geese the access to positions with a smaller number of pieces Sp−1 is only needed

during the initialization phase. As such initialization is a simple scan through a level we only

need one set Sp,i at a time. To save space for the fixpoint iteration, we release the memory needed

to store the previous layer. As a result, the maximum number of bits needed is max{|Sp|, |Sp|/n+
|Sp−1|).

6.2 GPU Computation

In the last few years there has been a remarkable increase in the performance and capabilities

of the graphics processing unit. Modern GPUs are not only powerful, but also parallel pro-

grammable processors featuring high arithmetic capabilities and memory bandwidths. Deployed

on current graphic cards, GPUs have outpaced CPUs in many numerical algorithms. The GPU’s

rapid increase in both programmability and capability has inspired researchers to map computa-

tionally demanding, complex problems to the GPU.

GPUs have multiple cores, but the programming and computational model are different from

the ones on the CPU. Programming a GPU requires a special compiler, which translates the

code to native GPU instructions. The GPU architecture mimics a single instruction multiply

data (SIMD) computer with the same instructions running on all processors. It supports differ-

ent layers for memory access, forbids simultaneous writes but allows concurrent reads to one

memory cell.

If we consider the G200 chipset, as found in state-of-the-art NVIDIA GPUs and illustrated in

Figure 5, a core is a streaming processor (SP) with 1 floating point and 2 arithmetic logic units.

8 SPs are grouped together with a cache structure and two special function units (performing

e.g. double precision arithmetics) to one streaming multiprocessor (SM), and used like ordinary

SIMD processors. Each of the 10 texture processor clusters (TSCs) combines 3 SMs, yielding

26

240 cores in one chip.

Memory, visualized shaded in the figure, is structured hierarchically, starting with the GPU’s

global memory (video RAM, or VRAM). Access to this memory is slow, but can be accelerated

through coalescing, where adjacent accesses with less than 64 bits are combined to one 64-bit

access. Each SM includes 16 KB of memory (SRAM), which is shared between all SPs and can

be accessed at the same speed as registers. Additional registers are also located in each SM but

not shared between SPs. Data has to be copied from the systems main memory to the VRAM to

be accessible by the threads.

The GPU programming language links to ordinary C-sources. The function executed in

parallel on the GPU is called kernel. The kernel is driven by threads, grouped together in blocks.

The TSC distributes the blocks to its SMs in a way that none of them runs more than 1, 024
threads and a block is not distributed among different SMs. This way, taking into account that

the maximal blockSize of 512, at most 2 blocks can be executed by one SM on its 8 SPs. Each

SM schedules 8 threads (one for each SP) to be executed in parallel, providing the code to the

SPs. Since all the SPs get the same chunk of code, SPs in an else-branch wait for the SPs in the

if-branch, being idle. After the 8 threads have completed a chunk the next one is executed. Note

that threads waiting for data can be parked by the SM, while the SPs work on threads, which

have already received the data.

To profit from coalescing, threads should access adjacent memory contemporary. Addition-

ally, the SIMD like architecture forces to avoid if-branches and to design a kernel which will be

executed unchanged for all threads. This facts lead to the implementation of keeping the entire

or partitioned state space bitvector in RAM and copying an array of indices (ranks) to the GPU.

This approach benefits from the SIMD technology but imposes additional work on the CPU. One

additional scan through the bitvector is needed to convert its bits into integer ranks, but on the

GPU the work to unrank, generate the successors and rank them is identical for all threads. To

avoid unnecessary memory access, the rank given to expand should be overwritten with the rank

of the first child. As the number of successors is known beforehand, with each rank we reserve

space for its successors. For smaller BFS layers this means that a smaller amount of states is

expanded.

For solving games on the graphics card [14], storing the bitvector on the GPU yields bad

exploration results. Hence, we forward the bitvector indices from the CPU’s host RAM to the

GPU’s VRAM, where they were uploaded to the SRAM, unranked and expanded, while the

successors were ranked. At the end of one iteration, all successors are moved back to CPU’s host

RAM, where they are perfectly hashed and marked if new.

7 Experiments

We divide the presentation of the experiments in permutation games (mostly showing the effect

of multi-core GPU computation) and selection games (also showing the effect of multi-core CPU

computation).

27

7.1 Permutation Games

We conducted the permutation game experiments on an AMD Athlon 64 X2 Dual Core Processor

3800+ system with 2 GB RAM. The GPU we used was an NVIDIA graphics card with G-200

chipset and 1 GB VRAM. In all cases we perform forward breadth-first search to generate the

entire state space.

For measuring the speed-up on a matching implementation we compare the GPU perfor-

mance with a CPU emulation on a single core. This way, the same code and work was executed

on the CPU and the GPU. For a fair comparison, the emulation was run with GPU code adjusted

to one thread. This minimizes the work for thread communication on the CPU. Moreover, we

profiled that the emulation consumed most CPU time for state expansion and ranking.

Sliding-Tile Puzzle The results of the first set of experiments shown in Table 1 illustrate the

effect of bitvector state space compression with breadth-first search in rectangular Sliding-Tile

problems of different sizes.

We run both the one- and two-bit breadth-first search algorithms on the CPU and GPU. The

3× 3 version was simply too small to show significant advances, while even in partitioned form

a complete exploration on a bit vector representation of the 15-Puzzle requires more RAM than

available.

We first validated that all states were generated and equally distributed among the possi-

ble blank positions. Moreover, as expected, the numbers of BFS layers for symmetric puzzle

instances match (53 for 3× 4 and 4× 3 as well as 63 for 2× 6 and 6× 2).

For the 2-Bit BFS implementation, we observe a moderate speed-up by a factor between 2
and 3, which is due to the fact that the BFS-layers of the instances that could be solved in RAM

are too small. For such small BFS layers, further data processing issues like copying the indices

to the VRAM is rather expensive compared to the gain achieved by parallel computation on

the GPU. Unfortunately, the next larger instance (7 × 2) was too large for the amount of RAM

available in the machine (it needs 3 × 750 = 2, 250 MB for Open and 2 GB for reading and

writing indices to the VRAM).

In the 1-Bit BFS implementation the speed-up increases to a factor between 7 and 10 in the

small instances. Many states are re-expanded in this approach, inducing more work for the GPU

and exploiting its potential for parallel computation. Partitions being too large for the VRAM

are split and processed in chunks of about 250 millions indices (for the 7× 2 instance). A quick

calculation shows that the savings of GPU computation are large. We noticed that the GPU

has the capability to generate 83 million states per second (including unranking, generating the

successors and computing their rank) compared to about 5 million states per second of the CPU.

As a result, for the CPU experiment that ran out of time (o.o.t), which we stopped after one day

of execution, we predict a speed-up factor of at least 16, and a running time of over 60 hours.

Top-Spin Problems The results for the (n, k)-Top-Spin problems for a fixed value of k = 4
are shown in Table 7.1 (o.o.m denotes out of memory, while o.o.t denotes out of time). We see

that the experiments validate the theoretical statement of Theorem 1 that the state spaces are of

28

2-Bit Time 1-Bit Time

Problem GPU CPU GPU CPU

(2× 6) 1m10s 2m56s 2m43s 15m17s

(3× 4) 55s 2m22s 1m38s 13m53s

(4× 3) 1m4s 2m22s 1m44s 12m53s

(6× 2) 1m26s 2m40s 1m29s 18m30s

(7× 2) o.o.m. o.o.m. 226m30s o.o.t.

Table 1: Comparing GPU with CPU Performances in 1-Bit and 2-Bit BFS in the Sliding-Tile

Puzzle Domain.

n States GPU Time CPU Time

6 120 0s 0s

7 360 0s 0s

8 5,040 0s 0s

9 20,160 0s 0s

10 362,880 0s 6s

11 1,814,400 1s 35s

12 39,916,800 27s 15m20s

Table 2: Comparing GPU with CPU Performances for Two-Bit-BFS in the Top-Spin Domain.

size (n − 1)!/2 for n being odd4 and (n − 1)! for n even. For large values of n, we obtain a

significant speed-up of more than factor 30.

Pancake Problems The GPU and CPU running time results for the n-Pancake problems are

shown in Table 7.1. Similar to the Top-Spin puzzle for a large value of n, we obtain a speed-up

factor of more than 30 wrt. running the same algorithm on the CPU.

7.2 Selection Games

Experiments are drawn on a Linux-PC with an Intel i7 processor having 8 cores running at 2.66

Ghz. The computer is equipped with 12 GB RAM. It has a NVIDIA graphics card with G-200

Chipset and 1GB VRAM.

Peg-Solitaire The first set of results, shown in Table 4, considers Peg-Solitaire. For each BFS-

layer, the state space is small enough to fit in RAM. The exploration result show that there are 5

positions with one peg remaining (of course there is none with zero pegs), one of which has the

peg in the goal position.

4At least the Top-Spin implementation of Rob Holte and likely the one of Ariel Felner/Uzi Zahavi do not consider

parity compressed state spaces.

29

n States GPU Time CPU Time

9 362,880 0s 4s

10 3,628,800 2s 48s

11 39,916,800 21s 10m41s

12 479,001,600 6m50s 153m7s

Table 3: Comparing GPU with CPU Performances in Two-Bit-BFS in Pancake Problems.

In Peg-Solitaire we find symmetry, which applies to the entire state space. If we invert the

board (exchanging pegs with holes or swapping the colors), the goal and the initial state are the

same. Moreover, the entire forward and backward graph structures match.

Hence, a call of backward breadth-first search to determine the number of states with a fixed

goal distance is not needed. The number of states with a certain goal distances matches the

number of states with a the same distance to the initial state. The total number of reachable

states is 187,636,298.

We parallelized the game expanding and ranking states on the GPU. The total time for a BFS

we measured was about 12m on the CPU and 1m8s on the GPU.

As the puzzle is moderately small, we consider the GPU speed-up factor of about 6 wrt. CPU

computation as being significant.

For validity of the results, we compared the exploration results match with the ones obtained

in [12]. For this case we had to alter the reward structure to the one that is imposed by the general

game description language that was used there. We found that the number of expanded states

matches, but – as expected – the total time to classify the states using the specialized player on

the GPU is much smaller than in the general player of [12] running on one core of the CPU.

Frogs-and-Toads Similar to Peg-Solitaire if we invert the board (swapping the colors of the

pieces), the goal and the initial state are the same, so that forward breadth-first search sufficies to

solve the game.

In a BFS of about 0.19 seconds we validated the result of Dudeney for the Fore and Aft

problem that reversing black and white takes 46 moves. There are two patterns which require

47 moves, namely, after reversing black and white, put one of the far corner pieces in the center.

Table 5 also shows that there are 218,790 possible patterns of the pieces.

As Frogs-and-Toads generalizes Fore and Aft, we next considered the variant with 15 black

and 15 white pieces on a board with 31 squares. The BFS outcome computed in 148m is shown

in Table 6. We monitored that reversing black and white pieces takes 115 steps (in a short-

est solution) and see that the worst-case input is slightly harder and takes 117 steps. A GPU

parallelization leading to the same exploration results required about half an hour run-time.

Fox-and-Geese The next set of results shown in Table 7 considers the Fox-and-Geese game,

where we applied retrograde analysis. For a fixed fox position the remaining geese can be bino-

mially hashed. Moves stay in the same partition.

30

Holes Bits Space Expanded

0 1 1 B –

1 33 5 B 1

2 528 66 B 4

3 5,456 682 B 12

4 40,920 4,99 KB 60

5 237,336 28,97 KB 296

6 1,107,568 135 KB 1,338

7 4,272,048 521 KB 5,648

8 13,884,156 1.65 MB 21,842

9 38,567,100 4.59 MB 77,559

10 92,561,040 11.03 MB 249,690

11 193,536,720 23.07 MB 717,788

12 354,817,320 42.29 MB 1,834,379

13 573,166,440 68.32 MB 4,138,302

14 818,809,200 97.60 MB 8,171,208

15 1,037,158,320 123 MB 14,020,166

16 1,166,803,110 139 MB 20,773236

17 1,166,803,110 139 MB 26,482,824

18 1,037,158,320 123 MB 28,994,876

19 818,809,200 97.60 MB 27,286,330

20 573,166,440 68.32 MB 22,106,348

21 354,817,320 42.29 MB 15,425,572

22 193,536,720 23.07 MB 9,274,496

23 92,561,040 11.03 MB 4,792,664

24 38,567,100 4.59 MB 2,120,101

25 13,884,156 1.65 MB 800,152

26 4,272,048 521 KB 255,544

27 1,107,568 135 KB 68,236

28 237,336 28.97 KB 14,727

29 40,920 4.99 KB 2529

30 5,456 682 B 334

31 528 66 B 33

32 33 5 B 5

33 1 1 B -

Table 4: One-Bit-BFS Results for Peg-Solitaire.

31

Depth Expanded

1 1

2 8

3 13

4 14

5 32

6 58

7 121

8 178

9 284

10 494

11 794

12 1,143

Depth Expanded

13 1,700

14 2,386

15 3,223

16 4,242

17 5,677

18 7,330

19 8,722

20 10,084

21 11,501

22 12,879

23 13,997

24 14,804

Depth Expanded

25 15,433

26 14,981

27 14,015

28 12,848

29 11,666

30 10,439

31 9,334

32 7,858

33 6,075

34 4,651

35 3,459

36 2,682

Depth Expanded

37 1,990

38 1,401

39 914

40 557

41 348

42 202

43 137

44 66

45 32

46 4

47 11

48 2

Table 5: BFS Results for Fore and Aft.

In spite of the work for classification being considerable, it was feasible to complete the

analysis with 12 GB RAM. In fact, we observed that the largest problem with 16 geese required

resistant space in main memory of 9.2 GB RAM.

The first three levels do not contain any state won for the geese, which matches the fact that

four geese are necessary to block the fox (at the middle boarder cell in each arm of the cross).

We observe that after a while, the number of iterations shrinks for a raising number of geese.

This matches the experience that with more geese it is easier to block the fox.

Recall that all potentially drawn positions that couldn’t been proven won or lost by the geese,

are devised to be a win for the fox. The critical point, where the fox looses more than 50% of

the game seems to be reached at currently explored level 16. This matches the observation in

practical play, that the 13 geese are too less to show an edge for the geese.

The total run-time of about 730h (about a month) for the experiment is considerable. Without

multi-core parallelization, more than 7 month would have been needed to complete the experi-

ments. Even though we parallelized only the iteration stage of the algorithm, the speed-up on the

8-core machine is larger than 7, showing an almost linear speed-up.

The total of space needed for operating an optimal player is about 34 GB, so that in case

geese are captured we would have to reload data from disk. This strategy yields a maximal space

requirement of 4.61 GB RAM, which might further be reduced by reloading data in case of a fox

moves.

8 Discussion

In this section we discuss further applications of the above approach.

The games have different applications in moving target search. For example, Fox-and-Geese

is prototypical for chasing an attacker, with applications to computer security, where an intruder

32

Depth Expanded

1 1

2 8

3 17

4 26

5 46

6 78

7 169

8 318

9 552

10 974

11 1,720

12 2,905

13 4,826

14 7,878

15 12,647

16 19,980

17 31,511

18 49,242

19 74,760

20 112,218

21 166,651

22 241,157

23 348,886

24 497,698

25 700,060

26 974,219

27 1,337,480

28 1,812,712

29 2,426,769

30 3,214,074

Depth Expanded

31 4,199,886

32 5,447,660

33 6,975,087

34 8,865,648

35 11,138,986

36 13,881,449

37 17,060,948

38 20,800,347

39 25,048,652

40 29,915,082

41 35,382,942

42 41,507,233

43 48,277,767

44 55,681,853

45 63,649,969

46 72,098,327

47 80,937,547

48 89,999,613

49 99,231,456

50 108,495,904

51 117,679,229

52 126,722,190

53 135,363,894

54 143,534,546

55 150,897,878

56 157,334,088

57 162,600,933

58 166,634,148

59 169,360,939

60 170,829,205

Depth Expanded

61 171,101,874

62 170,182,837

63 168,060,816

64 164,733,845

65 160,093,746

66 154,297,247

67 147,342,825

68 139,568,855

69 131,146,077

70 122,370,443

71 113,415,294

72 104,380,748

73 95,379,850

74 86,375,535

75 77,534,248

76 68,891,439

77 60,672,897

78 52,953,463

79 45,889,798

80 39,482,737

81 33,751,896

82 28,607,395

83 24,035,844

84 19,957,392

85 16,394,453

86 13,306,659

87 10,695,284

88 8,521,304

89 6,738,557

90 5,286,222

Depth Expanded

91 4,109,157

92 3,156,288

93 2,387,873

94 1,780,521

95 1,307,312

96 948,300

97 680,299

98 484,207

99 340,311

100 235,996

101 160,153

102 107,024

103 69,216

104 44,547

105 27,873

106 17,394

107 10,256

108 6,219

109 3,524

110 2,033

111 1,040

112 532

113 251

114 154

115 42

116 19

117 10

118 2

Table 6: BFS Results for Frogs-and-Touds.

33

Geese States Space Iterations Won Time Real Time User

1 2,112 264 B 1 0 0.05s 0.08s

2 32,736 3.99 KB 6 0 0.55s 1.16s

3 327,360 39 KB 8 0 0.75s 2.99s

4 2,373,360 289 KB 11 40 6.73s 40.40s

5 13,290,816 1.58 MB 15 1,280 52.20s 6m24s

6 59,808,675 7.12 MB 17 21,380 4m37s 34m40s

7 222,146,996 26 MB 31 918,195 27m43s 208m19s

8 694,207,800 82 MB 32 6,381,436 99m45s 757m0s

9 1,851,200,800 220 MB 31 32,298,253 273m56s 2,083m20s

10 4,257,807,840 507 MB 46 130,237,402 1,006m52s 7,766m19s

11 8,515,615,680 1015 MB 137 633,387,266 5,933m13s 46,759m33s

12 14,902,327,440 1.73 GB 102 6,828,165,879 4,996m36s 36,375m09s

13 22,926,657,600 2.66 GB 89 10,069,015,679 5,400m13s 41,803m44s

14 31,114,749,600 3.62 GB 78 14,843,934,148 5,899m14s 45,426m42s

15 37,337,699,520 4.24 GB 73 18,301,131,418 5,749m6s 44,038m48s

16 39,671,305,740 4.61 GB 64 20,022,660,514 4,903m31s 37,394m1s

17 37,337,699,520 4.24 GB 57 19,475,378,171 3,833m26s 29,101m2s

18 31,114,749,600 3.62 GB 50 16,808,655,989 2,661m51s 20,098m3s

19 22,926,657,600 2.66 GB 45 12,885,372,114 1,621m41s 12,134m4s

20 14,902,327,440 1.73 GB 41 8,693,422,489 858m28s 6,342m50s

21 8,515,615,680 1015 MB to be re-run 388m

22 4,257,807,840 507 MB 31 2,695,418,693 158m41s 1,140m33s

23 1,851,200,800 220 MB 26 1,222,085,051 54m57 385m32s

24 694,207,800 82 MB 23 477,731,423 16m29s 112m.35s

25 222,146,996 26 MB 20 159,025,879 4m18s 28m42s

26 59,808,675 7.12 MB 17 44,865,396 55s 5m49s

27 13,290,816 1.58 MB 15 10,426,148 9.81s 56.15s

28 2,373,360 289 KB 12 1,948,134 1.59s 6.98s

29 327,360 39 KB 9 281,800 0.30s 0.55s

30 32,736 3.99 KB 6 28,347 0.02s 0.08s

31 2,112 264 B 5 2001 0.00s 0.06s

Table 7: Retrograde Analysis Results for Fox-and-Geese.

34

has to be catched. In a more general setting, the board games are played with tokens on a graph

G = (V, E). For example, one move corresponds to pass a token along an edge (i, j) ∈ E. The

space complexities of the bit-state analysis now depends on the number of tokens played and the

number of nodes. For particular types of Petri nets like safe nets this might yield an appropriate

compression for their exploration.

8.1 Symmetries

Symmetries are helpful to reduce the time and space consumption of a classification algorithm.

In many board games we find reflection along the main axes or along the diagonals. If we look

at the four possible rotations on the board for Peg-Solitaire and Fox-and-Geese plus reflection,

we count 8 symmetries in total.

The exploitation of state symmetries are of various kinds. For Fox-and-Geese we can classify

all states that share a symmetrical fox position by simply copying the result obtained for the

existing one. Besides the savings of time for not expanding states, this can also save the number

of positions that have to be kept in RAM during fixpoint computation.

If the forward and backward search graphs match (as in Peg Solitaire and Frogs-and-Toads)

we may also truncate the breadth-first search proceedure to the half of the search depth. In two-

bit BFS, we simply have to look at the rank of the inverted unranked state. Moreover, with the

forward BFS layers we also have the minimal distances of each state to the goal state, and, hence,

the classification result.

8.2 Frontier Search

Frontier search is motivated by the attempt of omitting the Closed list of states already expanded.

It mainly applies to problem graphs that are directed or acyclic but has been extended to more

general graph classes. It is especially effective if the ratio of Closed to Open list sizes is large.

Frontier search requires the locality of the search space [28] being bounded, where the local-

ity (for breadth-first search) is defined as max{layer(s)−layer(s′)+1 | s, s′ ∈ S; s′ ∈ succs(s)},
where layer(s) denotes the depth d of s in the breadth-first search tree.

For frontier search, the space efficiency of the hash function h : S → {0, . . . ,m − 1} boils

down to m/
(

maxd |Layerd|+ . . . + |Layerd+l|
)

, where Layerd is set of nodes in depth d of the

breadth-first search tree and l is the locality of the breadth-first search tree as defined above.

For the example of the Fifteen puzzle, i.e., the 4 × 4 version of Sliding-Tile, the predicted

amount of 1.2 TB hard disk space for 1-bit breadth-first search is only slightly smaller than the

1.4 TB of frontier breadth-first search reported by [21].

As frontier search does not shrink the set of states reachable, one may conclude, that frontier

search hardly cooperates well with a bitvector representation of the entire state space. However, if

layers are hashed individually, as done in all selection games we have considered, a combination

of bit-state and frontier search is possible.

35

8.3 Pattern Databases

The breadth-first traversal in a bitvector representation of the search space is also essential for the

construction of compressed pattern databases [5]. The number of bits per state can be reduced to

log 3 ≈ 1.6. For this case, 5 values {0, 1, 2} are packed into a byte, given that 35 = 243 < 255.

The observation that log 3 are sufficient to represent all mod-3 values possible and the byte-wise

packing was already made by [8].

The idea of pattern database compression is to store the mod-3 value (of the backward BFS

depth) from abstract space, so that its absolute value can be computed incrementally in constant

time. For the initial state, an incremental computation for its heuristic evaluation is not available,

so that a backward construction of its generating path can be used. As illustrated in [5], for

an undirected graph a shortest path predecessor with mod-3 of BFS depth k appears in level

k − 1 mod 3.

As the abstract space is generated anyway for generating the database, one could alternatively

invoke a shortest path search from the initial state, without exceeding the time complexity of

database construction.

By having computed the heuristic value for the projected initial state as the goal distance in

the inverted abstract state space graph, as shown in [5] all other pattern database lookup val-

ues can then be determined incrementally in constant time, i.e., h(v) = h(u) + ∆(v), with

v ∈ succs(u) and ∆(v) found using the mod-3 value of v. Given that the considered search

spaces in [5] are undirected, the information to evaluate the successors with ∆(v) ∈ {−1, 0, 1}
is possible.

For directed (and unweighted) search spaces more bits are needed to allow incremental

heuristic computation in constant time. It is not difficult to see that the locality in the inverted

abstract state space determines the maximum difference in h-values h(v) − h(u), v ∈ succs(u)
in original space.

Theorem 9 (Locality determines Number of Bits for Pattern Database Compression) In a

directed (but unweighted) search space, the (dual) logarithm of the (breadth-first) locality of

the inverse of the abstract state space graph plus 1 is an upper bound on the number of bits

needed for incremental heuristic computation of bit-vector compressed pattern databases, i.e.,

for locality l−1

A = max{layer−1(u) − layer−1(v) + 1 | u, v ∈ A; v ∈ succs−1(u)} in abstract

state space graph A of S we require at most log⌈l−1

A ⌉ + 1 bits to reconstruct the value h(v) of a

successor v ∈ S of any chosen u ∈ S given h(u).

Proof. First we observe that the goal distances in abstract space A determine the h-value in

original state space, so that the locality max{layer−1(u) − layer−1(v) + 1 | u, v ∈ A; v ∈
succs−1(u)} is bounded by h(u)−h(v)+1 for all u, v in original space with u ∈ succs(v), which

is equal to the maximum of h(v)−h(u)+1 for u, v ∈ S with v ∈ succs(u). Therefore, the number

of bits needed for incremental heuristic computation equals ⌈max{h(v) − h(u) | u, v ∈ A; v ∈
succs−1(u)}⌉+ 2 as all values in the interval [h(u)− 1, . . . , h(v)] have to be accommodated for.

Thus for the incremental value ∆(v) added to h(u) we have ∆(v) ∈ {−1, . . . , h(v) − h(u)},

36

so that ⌈log(max{h(v) − h(u) + 2 | u, v ∈ S; v ∈ succs(u)})⌉ = log⌈l−1

A ⌉ + 1 bits suffice to

reconstruct the value h(v) of a successor v ∈ S for every u ∈ S given h(u). �

For undirected search spaces we have log l−1

A = log 2 = 1, so that 1 + 1 = 2 bits suffice to be

stored for each abstract pattern state according to the theorem. Using the tighter packing of the

2 + 1 = 3 values into bytes provided above, 8/5 = 1.6 bits are sufficient.

If not all states in the search space that has been encoded in the perfect hash function are

reachable, reducing the constant-bit compression to a lesser number of bits might not always

be available, as unreached states cannot easily be removed. For this case, the numerical value

remaining to be set for an unreachable states in the inverse of abstract state space will stand for

h-value infinity, at which the search in the original search space can stop.

For problems with discretized costs, more general notions of locality based on cost-based

backward construction have been developed [18]. More formally, the best-first locality has been

defined as max{cost-layer(s) − cost-layer(s′) + cost(s, s′) | s, s′ ∈ S; s′ ∈ succs(s)}, where

cost-layer(s) denotes the smallest accumulated cost-value from the initial state to s. The theo-

retical considerations on the number of bits needed to perform incremental heuristic evaluation

extend to this setting.

8.4 Other Games

We distinguish between permutation games and selection games, and add remarks on general

games for which a functional representation of the state space exists.

8.4.1 Permutation Games

Rubik’s Cube, invented in the late 1970s by Erno Rubik, is a known challenge for single-agent

search [19]. Each face can be rotated by 90, 180, or 270 degrees and the goal is to rearrange a

scrambled cube such that all faces are uniformly colored.

Solvability invariants for the set of all dissembled cubes are:

• a single corner cube must not be twisted

• a single edge cube must not be twisted and

• no two cube must be exchanged

For the last issue the parity of the permutation is crucial and leads to 8! · 37 · 12! · 211/2 ≈
4.3 · 1019 solvable states. Assuming one bit per state, an impractical amount of 4.68 · 1018 bytes

for performing full reachability is needed. For generating upper bounds, however, bitvector

representations of subspaces have been shown to be efficient [23].

8.4.2 Selection Games

The binomial and multinomial hashing approach is applicable to many other pen-and-paper and

board games.

37

• In Awari [25] the two player redistribute seeds among 12 holes according to the rules of

the game, with an initial state having uniformly four seeds in each of the holes. When all

seeds are available, all possible layouts can be generated in an urn experiments with 59

balls, where 48 balls represent filling the current hole with a seed and 11 balls indicate

changing from the current to the next hole. Thus the binomial hash function applies.

• In Dots and Boxes players take turns joining two horizontally or vertically adjacent dots

by a line. A player that completes the fourth side of a square (a box) colors that box and

must play again. When all boxes have been colored, the game ends and the player who

has colored more boxes wins. Here, the binomial hash suffices. For each edge we denote

whether or not it is marked. Together with the marking, we denote the number of boxes of

at least one player. In difference to other games, all successors are in the next layer, so that

one scan suffices to solve the current one.

• Nine-Men’s-Morris is one of the oldest games still played today. Boards have been found

on many historic buildings throughout the world. One of the oldest dates back to about

1400 BC [15]. The game naturally divides in three stages. Each player has 9 pieces, called

men, that are first placed alternately on a board with 24 locations. In the second stage, the

men move to form mills (a row of three pieces along one of the board’s lines), in which case

one man of the opponent (except the ones that form a mill) is removed from the board. In

one common variation of the third stage, once a player is reduced to three men, his pieces

may “fly” to any empty location. If a move has just closed a mill, but all the opponent’s

men are also in mills, the player may declare any stone to be removed. The game ends if a

player has less than three men (the player loses), if a player cannot make a legal move (the

player loses), if a midgame or endgame position is repeated (the game is a draw).

Besides the usual symmetries along the axes, there is one in swapping the inner with the

outer circle. Gassner has solved the game by computing large endgame databases for the

last two phases together with alpha-beta search for the first phase [15]. His results showed

that, assuming optimal play of both players, the game ends in a draw. For this game the

multinomial hash is applicable.

8.5 General Games

It is not difficult to extend the above functions to more than two different sets of pieces on the

board. For Chinese Checkers, for example, three and more colors are needed. In this case a larger

multinomial coefficient has to be built, but the construction remains similar to the one above.

We now look at general games with state spaces provided in functional representation. This

setting complements the explicit-state setting of Botelho et al.. The state space is present in

so-called functional representation. It has been constructed in symbolic forward search and a

bijection of all states S reached to {0, . . . , |S| − 1} is computed together with its inverse. This

approach will have potential applications in action planning, general game playing, and model

checking.

38

Algorithm 12 Rank-BDDs(s, v)

1: if v is 0-sink then

2: return 0

3: if v is 1-sink then

4: return 1

5: if v is node labeled xi with 0-succ. u and 1-succ. w then

6: if s[i] = 1 then

7: return sat-count(v) + rank(s, w)
8: if s[i] = 0 then

9: return rank(s, u)

Algorithm 13 Unranking-BDDs(r)

1: i := 1
2: start at root

3: while i ≤ n do

4: at node v for xi with 0-succ. u and 1-succ. w
5: if r ≥ sat-count(u) then

6: r := r − sat-count(u)
7: follow 1-edge to w, record s[i] := 1
8: else

9: follow 0-edge to u, record s[i] := 0
10: i := i + 1

The above algorithms are special cases of according ranking and unranking functions devel-

oped for BDDs [11]. For the sake of completeness, the according rank and unrank algorithms

are shown in Algorithm 12 and Algorithm 13. The BDD for representing the
(

n

k

)

structure is

of polynomial size. Secondly, up to the links to the zero sink that do not contribute to counting

the number of satisfying paths, the BDD is quasi-reduced by means that all variables appear on

every path.

For simple reachability analysis this does not provide any surplus, but in case of more com-

plex algorithms, like the classification of two-player games, perfect hash function based on BDDs

show computational advantages in form of (internal or external) memory gains.

9 Conclusion

In this work we presented and analyzed linear time ranking and unranking functions for games

in order to execute breadth-first search and retrograde analysis on sparse memory. We reflected

that such constant-bit state space traversal to solve games is applicable, only if invertible and

perfect hash functions are available. As an interesting time-space trade-off we studied one-bit

39

reachability and one-bit breadth-first search.The latter imposes the presence of a move alternation

property. Some previously unresolved games were solved, mostly in RAM, but sometimes using

I/O-efficient strategies.

The approach featured parallel explicit-state traversal of two challenging games on limited

space. We studied the application of multiple-core CPU and GPU computation and accelerated

the analysis. The speed-ups compare well with alternative results combining external-memory

and parallel search on multiple cores [21, 29].

In our experiments, the CPU speed-up is almost linear in the number of cores. For this

we exploited independence in the problem, using an appropriate projection function. The GPU

speed-up often exceeds the number of CPU cores considerably.

To compute invertible minimal perfect hash functions for permutation games, we extended

the already efficient method by Myrvold and Ruskey. For selection games, with binomial and

multinomial hashing we proposed an approach that has been inspired by counting the number

of paths (lexicographic smaller to the given assignment) in a BDD. Due to the small amount of

available shared RAM of 16 KB on the GPU, we prefer the space requirements for the ranking

and unranking functions to be small.

References

[1] E. R. Berlekamp, J. H. Conway, and R. K. Guy. Winning Ways. Academic Press, 1982.

[2] B. Bonet. Efficient algorithms to rank and unrank permutations in lexicographic order. In

AAAI-Workshop on Search in AI and Robotics, 2008.

[3] D. Bosnacki, S. Edelkamp, and D. Sulewski. Efficient probabilistic model checking on

general purpose graphics processors. In Model Checking Software (SPIN), 2009.

[4] F. C. Botelho and N. Ziviani. External perfect hashing for very large key sets. In ACM

Conference on Information and Knowledge Management (CIKM), pages 653–662, 2007.

[5] T. Breyer and R. Korf. 1.6-bit pattern databases. In Symposium on Combinatorial Search

(SOCS), 2009.

[6] M. Campbell, J. A. J. Hoane, and F. Hsu. Deep blue. Artificial Intelligence, 134(1-2):57–83,

2002.

[7] T. Chen and S. Skiena. Sorting with fixed-length reversals. Discrete Applied Mathematics,

71(1–3):269–295, 1996.

[8] G. Cooperman and L. Finkelstein. New methods for using Cayley graphs in interconnection

networks. Discrete Applied Mathematics, 37/38:95–118, 1992.

[9] J. C. Culberson and J. Schaeffer. Pattern databases. Computational Intelligence, 14(4):318–

334, 1998.

40

[10] M. Dweighter. Problem e2569. American Mathematical Monthly, (82):1010, 1975.

[11] S. Edelkamp and M. Diezfelbinger. Perfect hashing for state spaces in BDD representation.

In German Conference on Artificial Intelligence (KI), 2009.

[12] S. Edelkamp and P. Kissmann. Symbolic classification of general two-player games. In KI,

pages 185–192, 2008.

[13] S. Edelkamp and D. Sulewski. Model checking via delayed duplicate detection on the GPU.

Technical Report 821, TU Dortmund, 2008.

[14] S. Edelkamp and D. Sulewski. State space search on the GPU. In Symposium on Combina-

torial Search (SOCS), 2009.

[15] R. Gassner. Solving Nine-Men-Morris. Computational Intelligence, (12):24–41, 1996.

[16] W. H. Gates and C. H. Papadimitriou. Bounds for sorting by prefix reversal. Discrete

Mathematics, 27:47–57, 1979.

[17] E. Hordern. Sliding Piece Puzzles. Oxford University Press, 1986.

[18] S. Jabbar. External Memory Algorithms for State Space Exploration in Model Checking

and Planning. PhD thesis, University of Dortmund, 2008.

[19] R. E. Korf. Finding optimal solutions to Rubik’s Cube using pattern databases. In National

Conference on Artificial Intelligence (AAAI), pages 700–705, 1997.

[20] R. E. Korf. Minimizing disk I/O in two-bit-breath-first search. In National Conference on

Artificial Intelligence (AAAI), pages 317–324, 2008.

[21] R. E. Korf and T. Schultze. Large-scale parallel breadth-first search. In National Conference

on Artificial Intelligence (AAAI), pages 1380–1385, 2005.

[22] D. L. Kreher and D. R. Stinson. Combinatorial Algorithms. Discrete Mathematics and Its

Applications, 1984.

[23] D. Kunkle and G. Cooperman. Twenty-six moves suffice for Rubik’s cube. In International

Symposium on Symbolic and Algebraic Computation (ISSAC), pages 235 – 242, 2007.

[24] W. Myrvold and F. Ruskey. Ranking and unranking permutations in linear time. Informa-

tion Processing Letters, 79(6):281–284, 2001.

[25] J. W. Romein and H. E. Bal. Awari is solved. Journal of the ICGA, 25:162–165, 2002.

[26] J. Schaeffer, Y. Björnsson, N. Burch, A. Kishimoto, and M. Müller. Solving checkers. In

International Joint Conference on Artificial Intelligence (IJCAI), pages 292–297, 2005.

[27] R. Zhou and E. A. Hansen. Structured duplicate detection in external-memory graph search.

In National Conference on Artificial Intelligence (AAAI), pages 683–689, 2004.

41

[28] R. Zhou and E. A. Hansen. Breadth-first heuristic search. Artificial Intelligence, 170(4-

5):385–408, 2006.

[29] R. Zhou and E. A. Hansen. Parallel structured duplicate detection. In National Conference

on Artificial Intelligence (AAAI), pages 1217–1222, 2007.

42

