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Abstract

In this paper qualitative similarity measures are introduced. Depending on the underlying representation such similarity measures are
based on specific qualitative distinctions which are frequently motivated by perceptual clear distinctions. Here, we discuss one such rep-
resentation and show how it applies to different domains. In particular, qualitative methods are useful as soon as specific qualitative fea-
tures can be defined for the purpose of characterising specific objects. Accordingly, we set two examples, namely for a domain of
historical objects and for the geographic domain. Afterwards, however, we also demonstrate that our qualitative representation performs
quite well when applied to a well-known test data set, without specifying any specific features. Instead, frequencies of qualitative relations
are taken into account. The results indicate that qualitative measures not only relate to distinctions which can be easily comprehended by
vision but that they are especially efficient in terms of runtime complexity, both issues being of particular importance in the case of image

databases.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In computer vision, similarity matching is frequently
viewed as a matter of taking a number of measurements
using quantitative reference systems: given two vectors
(each one describing an image or a single object); we sup-
pose that each vector consists of n attributes. Then, the
question is how large their difference is. Similarity measures
which are based on real valued attributes reflect how simi-
lar objects are along n quantitatively partitioned spectra,
each of which comprises a metric on some particular gran-
ularity level. The similarity between objects, then, can be
determined with corresponding precision. From what fol-
lows, we are concerned with the usual n-dimensional fea-
ture space.

One might ask whether precision is always that impor-
tant; indeed, whether quantitative reference systems are
to be taken at all; or, is there an alternative approach for
the purpose of determining similarities in computer vision?
The class of methods we advocate in this article, do in fact

E-mail address: bg@tzi.de

1077-3142/$ - see front matter © 2007 Elsevier Inc. All rights reserved.
doi:10.1016/j.cviu.2007.05.002

also pertain to methods at the feature space level—though,
what distinguishes them is that they rely on differences in
kind, rather than of measurement. According to Freksa
[5], this means taking into account qualitative distinctions
obtained by comparing features within the object domain
rather than by measuring them in terms of some artificial
external scale. In this sense, qualitative features are of a rel-
ative kind where the reference entity is a single value rather
than a whole set of categories. For instance, in a scene we
distinguish whether two points lie on the same side with
respect to a line (the reference entity) or whether they lie
on different sides: we focus on how features are altogether
arranged, and we determine their ordering in the two-
dimensional plane but omit any quantitative distinctions.
As a consequence, a new category of appropriate similarity
measures is required. From now on, we shall speak of mea-
sures only in the sense of those qualitative distinctions.

It is not our purpose to propose just any alternative class
of similarity measures. Our concept of qualitative similarity
measures distinguishes itself to be robust and efficient.
However, we have to pay for it with imprecision. Interest-
ingly, imprecise descriptions are frequently sufficient, and
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in particular, frequently related to the human’s visual sys-
tem, who can comprehend such qualitative, imprecise fea-
tures better than precise quantitative measurements (we
are able to state whether two points lie on the same side
of a line or not, but we are not able to state how far they
are apart). This is where our method will be useful: either
coarse descriptions are sufficient for our purposes, or fea-
tures have to be provided which can be comprehended by
the user.

In order to relate our method to the state of the art we
shall finally compare it with a number of quantitative
approaches. Since many methods have been devised in
computer vision we have to select some of them; we do this
by focusing on those methods which fall into the same
complexity class (concerning the costs for the comparison
of two-dimensional outlines). Also, there exist some quali-
tative methods which have been proposed over the last dec-
ade. These include Cohn [1], who describes a region-
orientated technique that distinguishes different concave
shapes by considering the notion of the connection of
regions and their convex hulls; Schlieder [21], who intro-
duced a point-oriented approach by describing how triples
of vertices of a polygon are related relative to each other;
Galton and Meathrel [6] proposed a representation of out-
lines by means of strings over an alphabet of seven qualita-
tive curvature types. Eventually, the slope projection
approach of Jungert [17] maps the vertices of polygons
onto both the x-axis and the y-axis; depending on the
ordering of vertices on these axes several features can be
derived, for instance, whether a vertex forms a convex or
concave part of a closed polygon. All these approaches
characterise outlines qualitatively, as we will do below.
They are detailed and discussed in the context of our
method in [15]. It shows that opposed to quantitative
approaches qualitative approaches can be easily compared
on a conceptual level. This allows their representational
expressiveness easily to be determined, and as a conse-
quence, what features they are able to distinguish.

In Section 2 we shall motivate the employment of qual-
itative features by showing shape properties we are going to
look at. Section 3 introduces our qualitative feature
scheme. Sections 4.1 and 4.2 provide example applications
which show the usefulness of qualitative similarity mea-
sures in different domains; Section 4.3 shows how the qual-
itative representation performs quite well in comparison to
other well-known approaches. Section 5 analyses how sta-
ble the approach is, in particular when being faced with dif-
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ferent degrees of precision, distortions, changes in
viewpoint, and segmentation errors. Then, Section 6
defines the concept of qualitative similarity measures. We
conclude with a discussion about granularity and complex-
ity issues in Section 7.

2. Accessing qualitative features

The motivation for describing qualitative features of
objects is as follows. Collections of objects d’art, historical
tools, or natural objects such as in the geographic domain
are some examples of collections to which experts want to
access efficiently. Most notably, such collections show a
number of objects from the same category, each exemplar
showing specific details being typical for that exemplar.
Frequently, the expert has the visual appearance of those
specifics in mind. Therefore, a query-by-sketch system,
such as that described in [14] which puts emphasis on spe-
cific shape qualities, would provide an appropriate starting
point in searching for particular objects. In the following,
two scenarios are described that motivate the employment
of the methods we are going to present afterwards.

2.1. Scenario 1

The Bamberger Naturkundemuseum owns a 200-year-old
collection of malaceous and stone fruits (Fig. 1 shows some
exemplars). These wax fruits were manufactured and sold
by the Landes-Industrie-Comptoir of Bertuch (1747-1824).
A collection such as this one in the pomological cabinet
in Bamberg is of great interest to pomologists, who want
to know what kinds of apples existed in the past. The
collection is a considerable archive of old fruits; often
common in their time, many of which have subsequently
become extinct. For the purpose of identifying old fruits
which are rediscovered in nature, the Bertuch-collection
is an important, indeed indispensable, source. It is
exclusively the visual appearance which is conserved by
wax fruits and it is therefore only this to which we have
access. Consequently, we have to specify visual properties
of a fruit to identify it. Besides colour and texture which
both fade gradually over the years, it is primarily the shape
of an apple which distinguishes it from others, and it is
therefore the shapes of objects in which we are interested
in.

Images of the objects of the Bertuch-collection have
been taken at the Bamberger Naturkundemuseum. They
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Fig. 1. Apples of the pomological cabinet, showing the expert differences in shape.
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Fig. 2. An Italienischer Weisser Rosmarienapfel and its contour (right).

provide a database which shows fruits pertaining to 27 dif-
ferent types of apples. Each fruit relief can be specified by
the following features: (a) the overall shape is round
(Fig. 1b) or vertical-shaped (Fig. 1a) or wide (Fig. le);
(b) hills at the top (Fig. lc) or bottom or both or neither;
(c) dents at the top (Fig. le) or bottom or both or neither;
(d) a straight (Fig. 1b) or bent stalk (Fig. 1d) or no stalk
shown (Fig. 1c). These features combine to a configuration
space with 144 classes. For example, the [Italienischer
Weisser Rosmarienapfel has a vertical-shaped body and
its stalk is bent (see Fig. 2).

2.2. Scenario 11

In geographical information systems topological rela-
tions between geographical objects are frequently used
[4]. It may, for example, be crucial to a particular query
that there is a forest and that there is a river which is
not connected to the forest; but it does not matter at all
what the boundary of the forest looks like, or how far
the river is from the forest provided that they are not in
contact; such geometrical relationships are not important
when we are interested in those cases where only the given
topological relationships hold. Precise correspondences
would retrieve fewer results than there are actually in
the database. But sometimes topological relationships do
not sufficiently characterise the query. For example, it
might be crucial to take the curve progression of linear
objects into account, such as rivers, contour lines in topo-
graphic maps, coastlines, borders of countries and other
regions, transportation networks, such as roads and rail-
ways, irrigation networks, and sewer systems. See as an
example the rivers in Fig. 3, which are to be distinguished
regarding their meander. Here, we address the problem of
how to represent smooth curves by polygons in such a
way that the curve progression of linear objects is made
explicit.

One particular important field is spatial planning: for a
town planner, for example, it is of interest how objects in
geographic space spread out, how they determine the spa-
tial layout of their environment, so that it becomes possible

Fig. 3. Rivers differing regarding their meanderings.

to state how other objects can be related to them. Then,
looking for specific configurations in geographic space
the town planner puts emphasis on how objects are shaped.
Instead of precise shape descriptions, however, only a num-
ber of qualitative distinctions are of importance for him,
whether a river meanders through a town in a twisty way
or whether it smoothly takes its direction, for example.
Fig. 3 shows two rivers which differ with respect to how
they meander through their environment. While the first
scenario shows how to deal with imprecise queries by qual-
itative features, this second scenario demonstrates how this
very same description even allows specific Gestalt features
to be dealt with. But instead of taking a classical approach
for determining Gestalt features such as the curvature it is
then possible to determine these features in a query-by-
sketch system applied to imprecise shapes as shown in
the first scenario. Other features can be defined similarly
like meanders on the representation which will be intro-
duced in the next section.

2.3. Object of interest

There are two main challenges a query-by-sketch system
has to cope with. First, objects which belong to the same
category (and which therefore have quite a similar appear-
ance to each other) need to be distinguished. These objects
will, however, obviously differ in some characteristics to
which the expert attaches great importance (apples with a
round body versus those with a wide body or rivers which
are twisty versus those which are smooth). Second, these
characteristics are to be specified in a simple but reliable
way (both the apples’ bodies and the rivers’ curves will
be drawn only roughly in a sketch). There is, necessarily,
a trade-off between similarity and variety, the latter relating
to those characteristics which are important only to the
expert. These characteristics concern those properties that
the expert is particularly looking for, and as a consequence
which he will take care to specify graphically. Their quali-
tative description will be made possible by the qualitative
feature scheme of polygonal outlines we will present in sec-
tion 3. That is, the shapes will be approximated by poly-
gons and the parts of single shapes are described by line
segments. This is the reason why our method will be based
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Fig. 4. Conceptual neighbourhood graphs of BAy; (middle) and B.A;; (right); example instantiations of all relations (left), the bold vertical segment being
the reference segment which is oriented upwards as indicated in two cases (for Id and F)).

on line segments and how they can be arranged in the pic-
ture plane for defining specific shape features.

3. A qualitative feature scheme

In this section we will summarise previous work on a
qualitative feature scheme. It serves as an example
approach to which we shall apply the more general notion
of qualitative similarity measures. For the purpose of pro-
viding a manageable overview on how qualitative represen-
tations are defined and on how they are employed, we
focus on the description of linear objects (open as well as
closed objects) which can be approximated by polygons.
Accordingly, our feature scheme consists of a number of
relations which describe arrangements between line seg-
ments (of polygons) in two dimensions. Such relations have
been referred to as bipartite arrangements, BA for short
[10]. Fig. 4 shows these relations. They relate parts of a
contour to other parts of that same contour.

3.1. Course

If one line of a polygon is made the basis, the position of
every other line can be described relative to it, using the
relations of BA,; which are shown on the left-hand side
of Fig. 4. In this way, the qualitative context of a polygonal
line, x, is considered. Conceiving the polygon to be oriented
anticlockwise each reference segment has an orientation
which allows the positions of other segments to be
described relative to it, those segments being at its front
or back, lying towards its left or right, and so on. In com-
parison to the reference segment the orientations of all
other segments are not considered, only their positions rel-
ative to the reference segment are taken into account. Con-
sequently, the relations are defined by projecting both the
endpoints of a segment orthogonally onto the line going
through the reference segment. This enables one to distin-
guish whether those endpoints lie in the front of the refer-
ence segment (F), back to it (B), or somewhere in between
(D). Additionally, this projection comes either from the left
(I) or right (r), determining the second dimension (found in

the indices of the relations). Those relations found on the
left-hand side of Fig. 4 can be distinguished by this tech-
nique by combining both dimensions (resulting in for
instance Fj), and by combining both endpoints (resulting
in for instance F; if both endpoints lie F, of the reference
segment, or in, for instance, C; if one endpoint lies at F,
and the other one at B). Table 1 shows the definition of
all relations in accordance to the regions defined in
Fig. 5. Note that these relations are in particular sufficient
for the purpose of characterising simple polygons in Sec-
tion 4.1.4.

For a polygon with n lines we obtain a list of relations
which we refer to as the course of reference segment x, in
short C(x):

Definition 1. Course

x is line segment of a simple polygon P. Its course is
denoted by C(x) and describes all B.A,3 relations between
all lines of P and x:

C(x) = (Xyys-» Xy, )s ,.s N (1)

with x,, meaning that line segment y, is described with re-
spect to reference segment x.! In particular, it holds that
x, = Id, i.e. whenever a line segment is related to itself the
identity relation holds. A subset B.A;; C B.Ay;, shown on
the right-hand side of Fig. 4, provides a set of atomic rela-
tions in the sense that all other relations can be obtained by
combining 5.A; relations which relate to adjacent regions
(as shown on the left-hand side of Fig. 5). Any connected
chain of relations according to B.A; forms a valid combi-
nation and allows any relation BA,; \ BA;; to be repre-
sented. In particular some relations can be represented
differently. For instance C| = BO|D|FO| or C| = BO|FO|
depending on how the line segments relate to the reference
segment under consideration (cf. the right-hand side of
Fig. 5). This shows that the similarity of such different
arrangements is captured by the relation C; which is more
abstract than the atomic B.A;; relations. Note that this
mode of combination excludes cases of non-adjacent

Xy‘, S B./4237 i=1

! Instead of the common infix notation in a relational diction we use
indices in order to be able to list many B.A,; relations in a compact way.
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Table 1

Definition of BA relations between some segment p and a reference
segment q; p and q either coincide (it holds Id) or they are disjoint (and
have no point in common); p; and p, simply denote both endpoints of line

segment p

Name Meaning Definition
Id Identity PI=qiAP2=0>
F Front left preEFApEF
FO, Front-overlap left p1 € Fiapre Dy
D, During left p1 € DA pr € D
BO, Back-overlap left p1 € DjApy €B
B, Back left p1 € B/ A p2 € B,
Bm Back middle p1 €EBApEB,
B, Back right p1 € B,Apy € B,
BO, Back-overlap right p1 €B, ApeD,
D, During right p1 € D, Ap2 €D,
FO, Front-overlap right pr €D, ApEF,
F, Front right preF ApeF,
Fo Front middle preEF ApaeF
FOmi Front-over. mid.-left p1 € F,Apy €D
FC Front-contains left p1€F Ap€B
G Contains left preEFApeB
BC, Back-contains left p1 € FiAp€B,
BOmi Back-over. mid.-left p1 € DiApr € B,
BOr Back-over. mid.-right p1 €EBApeD,
BC, Back-contains right prEB ApEF,
C, Contains right p1EB AP EF,
FC, Front-contains right p1€EB,Ap2€F
FOumr Front-over. mid.-right pirED ApEF
Fm
F\ Fr A
FO, A FO,
D\ Dr
BO, BO, A
B, B,

Fig. 5. (Left) The distinguished regions induced around some reference

B

m

segment. (Right) Two different representations of the C, relation (BO,D\FO,

and BO|FO|)

BA,; relations as F|F, which do not form a connected path
of relations around Id. In order to get from F, to F, in an
outline shape one has to pass through F,,. This is the line
which goes through the reference line and which divides
the plane into left and right with respect to the reference
line. Note that there might be the particular case of a line
segment starting or ending precisely on the F, position.
In this case one passes at this endpoint through F,..

p(C(u)) =r

W

Fig. 6. Different circulation directions.

Having a polygon with n line segments there exist n
courses, each one comprising n bipartite relations, i.e. such
a feature scheme comprises a total of n? relations. Writing
down all courses, one below the other, for a polygon with
six lines the following matrix, M, is obtained (compare the
polygon on the left-hand side of Fig. 6, and note that sin-
gular relations, such as between x and y, are dealt with in
accordance to Gottfried [11]):

Id u, uy ue u U, Id D, D, BO, B, B,
Vy ld v v vy v D, Id F Fm F. C
wy owy, dowe owyow, Bn B Id F. C, B,
Xae X X4 Id Xy Xz B, B, B, Id D, D,
Yoo Yo Yw Yk ldoy, F. FO, D, D, d F
z, z, zZy 2z« z, Id D, D, BO, B, B, Id

3.2. Scope, extent, and scope histogram

The entire range of relations (according to 5.4,3) where
C(x) runs along is called its scope, and the number of dif-
ferent BA,; relations involved is called the extent, 5(C(x))
for short. The shortest extent is 0 in which case there is
no other line segment than the reference segment x itself;
the largest possible extent is 12 (which is |[BA;5 \ {ld}|) in
which case the course runs completely around x. Scopes
of such courses are also referred to as universal scopes since
all relations of BA,; are realisable within these scopes.
Eventually, there exist different scopes which have the same
extent, for instance, one course may go from F, to F, and
another one from B, to B,; both courses, however, have
an extent of 3.

Definition 2. Scope of a simple polygon

x is line segment of a simple polygon and C(x) is its
course. The entire range of regions where C(x) runs along is
called the scope ¢ of C(x). This range of regions is
characterised by a neighbourhood of BAj, relations,
starting with r; € BA;; and ending with r, € BAp,
(BA1, = BAj3\ Id) :

7(C(x)) = [rr]. (2)

The scope runs around the reference segment clockwise
from r; to r,. If the reference segment partitions the poly-
gon such that the scope is interrupted, two scopes are to
be given: that one before the reference segment and that
one after it. For those two parts we assume that they are
self-connected. Otherwise, for each separate self-connected
part a scope would be needed.
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For the polygon on the left-hand side of Fig. 6, we
obtain the following scopes (beginning with the first row):
[D:Bwl, [D/DJFB:] [BuBF, B/, [B:B]D.D] [F.D]F,
F.], [D,B,]. Note that for cases such as the second line seg-
ment we first of all expand non B.A;, relations to B.A;; rela-
tions (in this case C, is expanded as F,FO,D,BO,B,). The
length of a scope is called its extent (e.g. |[[D,Bn] =4,
DD =1, [FB]=7,...):

Definition 3. Extent

a(C(x)) is the scope of course C(x) of Polygon P. The
distance between the start-relation and the end-relation of
the scope og(C(x)) is called the extent of the scope, or
simply the extent of course C(x), denoted by 5(C(x)). The
extent is determined with the relations of BAijp, and it
holds that:

n(C(x)) € {0,1,...,12}. (3)
The extent of the polygon is the average extent of all
courses:

IP|

i— n C X
(p) = ZaEL)) @

Ld
According to Schuldt et al. [23], 86 scopes for simple,

closed polygons are possible. Some example scopes are as
follows: [F, F|], [F\F], [FiF.]. That is, a polygon can be char-
acterised independently of its number of line segments by
its scope histogram with its 86 entries.

Definition 4. Scope histogram

M is the matrix of all n courses of a simple, closed
polygon. H(M) denotes the scope histogram of M. Each
entry H(M) with i = 1,2,...,86 gives the number of scopes
which exist in M.

That is, the number of different scopes (one for each
course, 1.e. n altogether for a polygon with n line segments)
is simply counted and taken as a simple description for the
polygon.

For polygon M on the left-hand side of Fig. 6, we obtain
the following scope histogram: HM)p 5 1 =1, H(M)p 5, =
2, H(M>[F‘B,] =1 H(M)[BmB|] =1 H(MS[F,B,] =1, H(M)[B,B,] =
L H(M)p, =1, HM)p 5, = 1. All other entries of H(M)
are 0.

3.3. Circulation direction

It can be distinguished whether a course circulates /left
around or right around the reference segment:

Definition 5. Circulation direction

x is line segment of a polygon. The circulation between
two neighbouring line segments, y and y’, is left of x, i.e.
p(xy,x,) = |, if the path from the first relation x, to the
second relation x, runs anticlockwise around Id; otherwise,
it is right of x, in short r. If the direction does not change it
holds that p(x,,x,) =¢, as it does if y and y’ are not
adjacent line segments.

p(xy,%,) = ¢ denotes the case that it cannot be determined
from the point of view of x whether the circulation direc-
tion from y to z is clockwise or anticlockwise with respect
to x. This indeterminacy can either be compensated by
another reference segment or y and z are not adjacent in
which case their circulation direction cannot be derived
from y and z alone. Fig. 6 shows two examples. On the
left-hand side the course of x circulates entirely right of x.
On the right-hand side it also runs right of x, but it then
turns back, and as a consequence, after this turn it runs left
of x.

Further examples clarify the meaning of the circulation
direction”: p(FIFO)) = I, p(FO\F)) =, p(F\F.) = r, p(FIFOp..
BO,) =rr, p(FFO,FO,FOD,) =rlr, and p(FO,FIdD,.
BO,) = rr. Equal neighbouring directions can be omitted
in order to obtain only the changes, i.e. changes between
left and right or anticlockwise and clockwise, respectively.
It then holds that the number of changes between left and
right of p(C(x)) is less than or equal to the length of the
course.

Taking each of the line segments of the polygon on the
left-hand side of Fig. 6 as a reference segment, the circula-
tion direction to each other line segment is always either r
(clockwise) or ¢ (indeterminate). But the circulation direc-
tions of different reference segments of the same polygon
are not always equal, as demonstrated by the polygon on
the right-hand side of Fig. 6. Here, p(u,, u,) = p(D,,
BO,) =r, whereas p(zy,z,) = p(F|,FO,) = 1. The circulation
direction depends on the position of the reference segment
with respect to the other line segments of the same poly-
gon.’ Changing the circulation direction is what we will
focus on in the next section.

3.4. Reversals

As soon as a course changes its circulation direction
from left to right or right to left, the course includes a
reversal, as indicated by its first derivative. For example,
C(x) = F,FO, D,FO,F, comprises a reversal since the circula-
tion direction is changed after D, with the second FO,
relation.

Definition 6. Reversal

x is a line segment of a polygon and C(x) is its course. If
C(x) comprises two sections which circulate in different
directions around x it holds that ¢(C(x)), saying that C(x)
contains a reversal.

2 Note that in the following we simplify the notation and write
p(x,x;) =1 instead of p(x,, x,) =I|. Moreover, an arbitrary number of
relations are allowed meaning that all according circulation directions are
to be mentioned, such as p(FFO.,,BO,) =rr.

3 It depends also on its orientation relative to the other line segments.
However, the current work solely relies on relative positions and analyses
their relationships.
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C(x) = D,D,D,D,D,D,D; C(x) = D,D,D,D,D,D,D,

= I

Fig. 7. Two polygons describing the same course with respect to line
segment x.

Examples of courses without reversals from the view-
point of line segment x are depicted in Fig. 8. Examples
of courses with exactly one reversal with respect to x are
depicted in Fig. 9. As the left-hand side of Fig. 7 shows,
all reversals of a polygon cannot always be deduced from
single courses. It is rather necessary to test all courses of
a polygon in order to determine whether there are reversals
in the polygon. An algorithm which determines reversals is
proposed in [13]. Eventually, determining line segments at
which reversals occur enables reversals to get distinguished
according to BAy;.

3.5. Summary

To summarise, at the finest level sequences of B.Aj;
relations are considered (Definition 1); expanded as
BA;, relations they form together scopes from the point
of view of one reference segment (Definition 2), such a
scope telling us where a polygon develops regarding this
reference segment; the length of a scope is called its extent
(Definition 3); scope histograms integrate the scopes of all
courses of one polygon (Definition 4); following a list of
BA,; relations a course either orbits clockwise or anti-
clockwise around the reference segment (Definition 5).
Taking the first derivative of a course amounts to consid-
ering changes in direction, which we refer to as reversals
(Definition 6). Positions at which such changes occur
are analogous to local minima and maxima of functions
and they can be referred to by BAy; relations. While
scope and extent simply state where a polygon runs along
according to the reference segments taken into account,
circulation directions and reversals tell us sow polygons
take their way along their scopes.

C(x) = F,FO,BO,B,BO|FOF/F,,FO,BO,B,BO, C(x) = F,FO,D,D,BO,B,

SO

Fig. 8. Polygons without reversals from the point of view of reference
segment Xx.

C(x) = F,F,FO,D,FO,F, C(x) = D,D,D,BO,B,B,BO,D,

Fig. 9. Polygons with reversals; note that relations are put together when
they are equal and adjacent; the circles indicate line segments at which
reversals occur.

4. Applications
The following applications demonstrate:

e How to use the qualitative representation in a query-by-
sketch system (using the basis relations and scopes and
their extent, i.e. BA relations).

e How it shows to be useful in the geographic domain
(employing the circulation direction and reversals, i.e.
Gestalt features).

e How it performs regarding a well known test data set
(applying scope histograms, i.e. frequency distributions).

All example applications especially show how well the
qualitative description can be comprehended by the
human operator, regardless of whether using just the
basis relations, complex Gestalt features which are based
on them, or simply frequency distributions of the qualita-
tive relations. However, in all these applications we focus
on describing the silhouettes of objects which can be
done regarding this qualitative line segment based
representation.

4.1. Scenario I

In the first scenario we consider the objects of the
Bertuch-collection. The images in this collection are pre-
processed and their features have been saved for efficient
access. Both the apples of the collection and graphical
queries (sketches) are analysed as follows. Gaps in the
sketches are closed by morphological operations [25],
the images are binarised (reduced to 1bit per pixel),
the contour is extracted, and eventually approximated
by a closed polygon [20]. A granularity level can be
defined on the basis of the maximum difference between
the original contour and the approximating polygon. The
larger this difference is, the coarser the granularity level.
Fig. 10 shows an example. We consecutively show how a
qualitative and how a quantitative method deals with
measuring the similarity of objects (query and database
image).

4.1.1. Qualitative approach

At first, the convex parts of an object are determined
by walking anticlockwise around the polygon and taking
the triangle orientation of three adjacent points: if each
triangle orientation is anticlockwise the whole object is
convex (in this case there are only left-of relations R,
R, € {F, FO, D,, C, BO, B}); otherwise concave parts
are identified by obtaining triangle orientations which
are oriented clockwise (then, right-of relations are found
{F,, FO,, D,,...}). The length of the convex parts are used
for distinguishing parts of the body (large convex por-
tions) from those pertaining to the stalk (short portions).
A number of changes of the triangle orientation along
small parts at the bottom or top indicate the existence
of single dents or hills.
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Fig. 10. An apple, its contour and its polygonal approximation.

Second, the qualitative matrix of a polygon is analysed.
For the purpose of classifying the body of an apple, its
overall shape is determined by considering the convex parts
of the body (as described in the previous paragraph) and by
looking for those columns in the qualitative matrix in
which overlap- and during-relations (relations such as D,
D,, FO,, FO,, BO,, BO,) mount up along those convexities,
showing deviations from a roundish shape and indicating
whether these deviations result in a vertical or wide shape
regarding the image plane. This is possible just because
the representation allows different convex shapes to be dis-
tinguished as opposed to other qualitative approaches
which are not capable of distinguishing different convexi-
ties [12].

In order to distinguish two kinds of stalks we measure
the extent of those parts which have been identified as
stalks (Definition 3). The extent tells us something about
the complexity of a polygon’s course (Definition 1), i.e. if
line segments are placed equally or differently with respect
to a reference segment, and to what extent they surround it.
This allows us to distinguish stalks which are almost
straight from those which are bent. Further (local) qualita-
tive properties are defined in [8,9,12,14].

4.1.2. Quantitative approach

In order to show how our approach compares to others,
it is useful to choose an alternative approach which is also
based on polygons. The discussion about the performance
of different approaches can then concentrate on the ques-
tion of how these approaches work on the same represen-
tation of an object. In this sense it is equally important
to compare our approach with an algorithm which is based
on the same representation, at the same granularity level.

By describing and comparing polygons using a classic
quantitative geometric approach (specifically, comparing
the lengths of, and angles between corresponding line seg-
ments in two polygons), we can evaluate our method as an
alternative. But before comparing polygons using this
quantitative approach, the lengths of the line segments
must be normalised with respect to the longest side; this
allows polygons which are differently scaled to be com-
pared. For two polygons with the same number of vertices,

it is then possible to quantitatively calculate their distance
from each other. Since there are n ways to match two poly-
gons with # lines, all these matches are calculated, and the
one giving the smallest distance is taken as the result. Two
equal polygons have a distance of zero, and the more their
angles and the lengths of sides differ, the higher their dis-
tance becomes.

4.1.3. Experimental procedure

Three students have participated on a voluntary basis.
They had to concern themselves with the shapes of apples
in order to get an idea of what shape properties typically
exist. After the participants felt confident about the way
one could discern different types of apple by shape proper-
ties, they had to imagine differently shaped apples which
they had to draw. These sketches were then used for query-
ing the Bertuch-collection. Reference sets for each of those
query sketches have been made by an expert. The ordering
of the result is determined in accordance to domain specific
qualitative features; for the pomological domain the rank-
ing of these features is described in [14].

4.1.4. Results

The first sketch is shown on the left-hand side in Fig. 11.
The reference set consists of seven objects (shown in Table
2). Fig. 12 shows the precision-recall curves for that query-
sketch. The right-hand side of Fig. 12 also shows the aver-
age precision for all six sketches which are shown in

Table 2
First sketch’s precision and recall; Pos. refers to the position in the ranked
result set

Pos. Name Prec. Rec.
1 Gestreifter Winter

Erdbeerapfel 1 1.0 0.14
2 Doppelmontagne I 1.0 0.28
5 Sommer Zuckerapfel I 0.6 0.42
6 Veilchenapfel 1 0.66 0.57
7 Veilchenapfel 11 0.71 0.71
8 Weisser Winterkalvill T 0.75 0.85
20 Rother Wintercalville 1 0.35 1.0
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Fig. 11. Six sketched queries.
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Fig. 12. (Left) The first precision-recall curve. (Right) Average precision of all requests.

Fig. 11. For each but one of the sketches the qualitative
approach performs better than the quantitative one.

Since we obtain different polygons depending on how
finely the fruits’ reliefs are approximated, the sketches have
been analysed at different granularity levels. The left-hand
side of Fig. 13 shows the performance of both algorithms
at a finer granularity level than Fig. 12. While there is
almost no difference for the quantitative approach, the per-
formance of the qualitative one is slightly lower, especially
at higher recall rates. The right-hand side of Fig. 13 shows
two further precision-recall curves for a coarser granularity
level than Fig. 12. While the qualitative algorithm performs
significantly better than the quantitative approach at the
two finer granularity levels, it is only slightly better at the
coarsest granularity level.

4.1.5. Discussion
Our results show that the qualitative algorithm generally
performs much better than the quantitative one. While the

Prec.
1

0.5}

Recall

0 L L
0 0.5 1

performance of the quantitative one is almost independent
of the recall rate, the qualitative algorithm shows a ten-
dency to achieve higher precision at lower recall rates, with
the precision decreasing slightly as the recall increases. It is
obviously much simpler to sketch qualitative differences
than precise quantitative distinctions.

How does our approach manage to identify the qualita-
tive differences when dealing with the imprecise shapes of
the queries? We shall have a closer look at the analysis of
the stalk in order to demonstrate our method. If we zoom
into the fifth sketch shown in Fig. 11, and show the stalk in
close-up, we obtain the left-hand side of Fig. 14. Here we
see how qualitative global features could allow us to distin-
guish whether a stalk is bent relative to its body or not.
This can be detected by checking whether there are line seg-
ments at the tip of the stalk relative to which parts of the
body are in relations such as x, = BO, and x, = FO,—there
would not be such overlap relations if the stalk points
straight up, rather than being bent in this way.

Prec. N
— qualitative
— quantitative

. Recall
0 0.5

Fig. 13. Precision-recall curve at a fine granularity level (left), at a coarse one (right).

Fig. 14. (Left) A stalk and its relation to the body. (Right) Two differently bent stalks.
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Another variation is shown on the right-hand side of
Fig. 14. In this case, the stalks of two apples have been
completely detached from their body, and we will demon-
strate how their curvature can be determined without refer-
ring to the bodies of the apples. On the left is the stalk of
the Italienischer Weisser Rosmarienapfel and on the
right-hand side the one from the fifth sketched query.
The extent of each polygon shows whether a stalk is bent
or not. Consider the scopes (Definition 2) of the polygon
on the left-hand side:

a(C(x)) = BIFJ[F.F] An(x)

=7
a(Cly)) = [BFJ[F.F] Anly) =9
a(C(z)) = [BF[F.F]An(z) =8.

By contrast, for the less bent stalk on the right-hand side it
holds (for the concave line segments) that:

a(C(x)) = [BIF/] An(xt) =17
a(C(y")) = [BiFa][BB/] An(y) =7
o(C(Z)) = [B,D][B,B,] A n(z/) = 5.

The scopes and their extent show some differences. In par-
ticular, for the stalk on the left-hand side the maximal ex-
tent is larger by two than the maximal extent of the stalk on
the right-hand side. This allows different degrees in the cur-
vature of the stalks to be distinguished.

4.2. Scenario 11

The second scenario shows how a conceptual feature
can be characterised within the geographic domain taking
a single qualitative feature alone. In their case study [13]
compared the similarity of the fourteen largest German riv-
ers. For instance, while the Mosel (on the right-hand side
of Fig. 3) has many twists and turns, the Fulda (on the
left-hand side) is less curved but comprises also some wind-
ings. Does the concept of reversals as introduced in the
qualitative framework account for those distinctions? In
order to obtain polygons the rivers have been approxi-
mated by the polygonal approximation algorithm of Mitz-

ias and Mertzios [20]. Using 1:5,000,000 small scale maps,
the Mosel has been approximated by 51 line segments while
the Fulda has been approximated by 22 line segments,
allowing for the same error in both cases, namely not
exceeding a cell in a raster representation of these maps.
The reversals of these objects are simply computed accord-
ing to Definitions 5 and 6.

The Fulda comprises 8 reversals (on average, 0.36 per
line segment) and the Mosel comprises 94 reversals (on
average, 1.84 reversals per line segment). This shows that
the method identifies the Mosel to be five times more
curved than the Fulda. Note that counting the number of
reversals we do not suddenly turn to some quantitative
measurement. The number of reversals is simply a quanti-
tative measure of the incidence of some qualitative feature,
namely of reversals which are still of a qualitative kind.
Moreover, it is the ordering of the number of reversals of
different rivers which matters, allowing the rivers to get
ranked, this ordering also being of relative (and hence qual-
itative) nature.

In Fig. 15 there are fourteen of the largest rivers in Ger-
many and their polygonal approximations. They have been
ordered regarding their meanders, i.e. for each river the
number of reversals has been determined and normalised
with the number of line segments involved. The polygonal
approximations have been printed outside the map in order
to allow them to be compared more easily. The first river
with the fewest reversals is the river Havel, that one with
the most reversals is the river Mosel (last one in Fig. 15).
The shown ordering can in fact be comprehended very well:
beginning with the Havel the rivers getting more and more
complex. It shows that both little meanders like in the case
of the Mosel and larger meanders which extend larger por-
tions of the river like in the case of the Elbe (third one, first
row) and the Fulda (second one, second row) are equally
identified by this method.

Looking not only for specific configurations of objects
in geographic space (which would already be covered by
a spatial query-by-sketch system as that one from Egenho-
fer [4]), the town planner in our example is also interested

Fig. 15. German rivers and their meanderings, getting more complex from left to right and from top to down.
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in what shapes look like. However, he is not looking for
precise shape distinctions (as they are made by quantitative
methods) but for conceptual features he will care to distin-
guish (as they are represented by features such as reversals).
The river Neckar and the river Mosel, for example, are
quite different when making precise distinctions. Taking
into account a qualitative concept (like reversals), the rivers
are classified as similar—in particular when comparing
them with smooth rivers like the Fulda and the Isar. More
important, the user of a query-by-sketch system will be able
to draw quite twisty curves, somehow less twisty curves,
and also almost smooth curves, but he will not care about
the precise appearance of the curves; the results show that
indeed the qualitative approach judges the Mosel and the
Neckar to be similar with regard to this specific qualitative
feature; by contrast, a quantitative approach that measures
the difference between the Mosel and the Neckar would
find quite a large difference. However, reversals form just
one example demonstrating how qualitative features are
both easily perceivable and readily sketched. Eventually,
a further motivation for the approach in the geographic
domain is the omnipresence of large amounts of polygonal
data which require methods that can be directly applied to
them.

4.3. Scenario 111

The retrieval performance of our method has been com-
pared with several other approaches in Schuldt et al. [23].
For this purpose, the well-known core experiment CE-
Shape-1 for the MPEG-7 standard has been used which
allows a comparison of approaches to be accomplished
by taking into account only retrieval results [19]. Part B
tests the similarity-based retrieval performance with a data-
base of 1400 images: these images are semantically grouped
into 70 classes of various shapes, each class containing 20
objects (some objects are shown in Fig. 16). Each image
is used as a query, all other images in the database are
ordered with respect to their similarity as it is measured
by the approach under test. For each query the number
of images which belong to the same class are counted in
the first 40 results. Since every class contains 20 instances,
the maximum number of correct matches is 20 for each sin-
gle query. As a consequence, the total number of correct
matches for all 1400 queries is 28,000. The result of the test
is the ratio of the number of found objects and the total
number of correct matches. As explained by Latecki
et al. [19], a retrieval rate of 100% is not possible when only
using shapes, since some classes contain objects which are
semantically similar but simultaneously significantly differ-
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ent regarding their shape. Conversely, using a hypergeo-
metric distribution, it is easy to show that a random
ordering of the search results achieves about 2.86% in the
MPEQG test. This is a lower bound showing how much bet-
ter an approach is in comparison to mere chance.

Since the scope histogram offers constant time com-
plexity for the comparison of two objects (note that the
qualitative matrix as well as the histogram only have to
be computed once off-line), the approach should be com-
pared to others also having this property. This holds for
the seven invariant moments proposed by Hu [16]. Apply-
ing Steger [26], these moments can directly be computed
for polygons (as in our approach). Simpler are quantita-
tive numeric features characterising polygons by a single
numeric value. A prominent example is the compactness
[3], which corresponds to the ratio 4},%" of area and perim-
eter. Further examples are the radius ratio & of the min-
imum enclosing circle and the maximal contained circle [7]
as well as the aspect ratio £+ of the minimal enclosing
rectangle [3]. Performing the MPEG test for those
approaches leads to the results listed in Table 3: it shows
that the numeric features, namely compactness, radius
ratio, and aspect ratio, which characterise a shape by
one single number gain results between approximately
16% and 24%. This is already significantly better than
when ordering the shapes randomly (which is less than
three percent correct matches). Better results can be
achieved by using the seven Hu moments. Their results
are at least 10 percentage points better as they retrieve
about 34% of the total number of correct matches. The
scope histogram outperforms all other examined
approaches and retrieves about 46%. In sum, using the
scope histogram (according to Definition 4) it is possible
to achieve retrieval results which are about 16 times better
than a random ordering. Furthermore, our approach out-
performs the other examined approaches which also offer
constant time complexity.

After having examined the retrieval results of the scope
histogram, the question arises whether these results can be
improved by combining the scope histogram with one or
more of the other approaches with constant time complex-
ity. Table 4 lists the classification results for some of these
combinations. It shows that by combining all numeric fea-
tures, namely compactness, radius ratio, and aspect ratio, a
result of about 52% can be achieved; including the Hu
moments, we obtain 54%; the scope histogram in combina-
tion with the Hu moments, 54%; the scope histogram in
combination with the three numeric features, we achieve
64%. When taking all five features together into consider-
ation we achieve a retrieval result of approximately 64%.

Glas:

L

Fig. 16. Ten exemplars from 10 different categories of the MPEG-test data set.



128 B. Gottfried | Computer Vision and Image Understanding 110 (2008) 117-133

Table 3

Classification results of compactness (CO), radius ratio (RR), aspect
ratio (AR), Hu moments (HU), and scope histogram (SH) for CE-Shape-
1/B

Table 5

The classification results of Table 3 and of the combination of all numeric
features (NF) can be improved if a prototype is computed for each class of
the MPEG test data set

CcOo RR AR HU SH CO RR AR SH NF NS
21.86 16.82 24.12 34.13 45.52 22.14 15.43 24.43 65.57 62.57 82.93
Table 4

Classification results for combined features: all numeric features (NF), all
numeric features and Hu moments (NH), all numeric features and scope
histogram (NS), Hu moments and scope histogram (HS), and all these
features together (AL)

NF NH NS HS AL
51.58 53.99 63.75 53.81 64.26

When comparing the retrieval result of all features (AL)
with all but the Hu moments (NS), we learn that the Hu
moments do not significantly improve the results. By con-
trast, a comparison of the retrieval result with all features
(AL) without our scope histogram (NH), shows that the
scope histogram improves the results by about 10 percent-
age points. Eventually, it is worth mentioning that a retrie-
val result of about 64% is only about 12 percentage points
less than the results achieved by the correspondence of
visual parts of Latecki and Lakdmper [18] (which is
76.45%), which has a significantly higher time complexity
of O(mn?) for the comparison of two objects.

Yet another advantage of qualitative features, such as
the scope histogram, is discussed in Schuldt et al. [24],
namely that they allow prototypes of categories to be
defined. This is useful since a common categorisation tech-
nique is based on the definition of clusters which define
classes by training examples. In order to analyse whether
the scope histogram qualifies itself as such a clustering
method, we shall define clusters upon the MPEG data set
and rerun our evaluation on this basis. For this purpose
the average of the values of all features is taken for each
class. For the scope histogram we determine the average
of the corresponding entries. In proceeding this way we
define a number of 70 prototypes, one for each class. Using
these prototypes we achieve the results listed in Table 5. It
shows that the classification results of the three numeric
features do not significantly change when they are solely
applied in a clustering scenario. By contrast, the scope his-
togram’s results can be improved by 20 percentage points
to 66%. The scope histogram now even outperforms the
combination of the three numeric features, which achieve
together about 63%. A combination of the numeric fea-
tures and the scope histogram leads to almost 83% correct
matches.

As mentioned above, when performing the complete
MPEG test, 1400 queries each consisting of 1400 compar-
isons of two objects have to be processed. Altogether, this
results in nearly two million comparisons. In our Java
implementation it takes only about 20s to perform the
MPEG test for the scope histogram on a computer with

Windows XP and an AMD mobile Athlon processor with
about 1.5 GHz.

5. Robustness

Having shown the application of the qualitative
approach, the question arises as to how stable it is. This
is important inasmuch deviations between polygons might
exist although these polygons approximate the same object.
This is due to noisy data or differently approximated out-
lines. In order to analyse how qualitative shape concepts
behave under such circumstances we have to address a
number of issues:

e The shapes are to be approximated with different
degrees of precision for the purpose of showing how
the features behave when applied to different granularity
levels;

e The MPEG test data set is discussed in order to show
that this data set is compiled so as to test distortions
of non-rigid objects, changes of viewpoints, as well as
other problems arising due to digitisation and segmenta-
tion noise;

e It will be discussed why the qualitative representation
provides promising results even when faced with dis-
torted and incorrect shape approximations.

5.1. Different granularity levels

Four quite different approximation levels have been
tested which cover a wide range of granularities. In the
most simple case each outline would be approximated by
three points. This, however, means that each object would
be represented by a triangle and consequently the objects
could not be distinguished anymore. When taking the ori-
ginal outlines of the 1400 objects of the MPEG data set
there are 619 contour points per object on average. It
shows that about 10-15 points should be taken so that
visually at least simply shaped categories can be distin-
guished. On the other extreme, it shows that even complex
categories are approximated very well when taking into
account about 50 contour points. Fig. 17 shows an
example.

For the four levels of precision presented in Table 6 the
complete MPEG test has been carried out in Schuldt [22].
In the first case only 2% of all contour points have been
taken. On average this means that each object is approxi-
mated by only 13 points. Additionally to the scope histo-
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Fig. 17. An elephant approximated at different granularity levels.

Table 6

The MPEG test carried out on four different granularity levels for testing the scope histogram (SH), polygonal extent (PE), the development of BA

relations (BA), compactness (CO), radius ratio (RR), and aspect ratio (AR)

Average number of points Qualitative features

Quantitative features

SH PE BA CO RR AR
13 (2%) 39.25 25.04 22.59 21.00 16.26 23.65
19 (3%) 43.67 24.97 22.62 21.86 16.82 24.12
29 (5%) 41.68 24.06 2291 22.29 17.84 24.99
50 (8%) 42.45 22.55 22.19 22.52 17.76 25.54

gram (SH) the test has been carried out for the polygonal
extent (PE, see Definition 3). Furthermore, for the purpose
of comprehending how stable BA relations are the courses
have been completely analysed (B.A, see Definition 1). This
analysis considers all changes of BA relations from the
point of view of each segment. These changes have been
counted and averaged so as to show whether polygons sim-
ilar develop around their reference segments. For this pur-
pose each pair of segments in the qualitative matrix has
been taken into account (see Section 3.1). For comparison
the single numeric features are also analysed on those dif-
ferent granularity levels (CO, RR, and AR).

The results show that the differences between different
granularity levels are rather small. This holds for the qual-
itative as well as the quantitative approaches, indicating
that the features are robust with respect to precision. The
variability of differences is only slightly higher for the qual-
itative approaches with the exception of BA that varies
only within a range of 0.72%; while the other qualitative
features vary in a range of about 2% and 3%, the quantita-
tive approaches vary in a range of approximately 1.5% and
2%. This shows that the chosen approximation precision
does only slightly influence the results. From Fig. 17 one
can learn that although details get distorted on coarse
granularity levels the overall relative frequency of existent
BA relations stays similar (e.g. what is left of the elephant’s
trunk: two parts of the body (near the eyes and near the
tail); what is right of it: nothing)—essentially the absolute
number of relations gets smaller on coarse granularity lev-
els; characteristic relations, however, remain.

5.2. The MPEG test data set

Having used the MPEG test data set a number of prob-
lems have been addressed implicitly, namely those related
to changes in viewpoint, digitisation and segmentation
errors, and distortions. This data set has been compiled
so as to include object depictions which suffer from these

problems. That is there are some outlines which are almost
perfect while others have been made imperfect on purpose.
We shall discuss those problems in the following by picking
out examples that illustrate the complexity of the MPEG
test data set.

5.2.1. Changes in viewpoint

Changing the viewpoint on an object generally entails a
change in the object’s outline shape. Fig. 18 demonstrates
this for the fly category. Those depictions are quite differ-
ent. Nevertheless, some properties keep visible even when
changing the viewpoint from above to a side view: legs
and feeler are always depicted as thin elongated parts while
the wings are relatively large areas going somehow to the
side and being closely attached to the body from which
they cannot be completely separated. However, the precise
shape of the wings, legs, feeler, and the body change. But
still their overall arrangement stays similar when changing
the viewpoint slightly, implying that positional-contrast
(measured by BA relations) stays also similar.

5.2.2. Digitisation and segmentation errors

Fig. 19 gives some examples of digitisation and segmen-
tation errors. They lead to small (the left of Fig. 19) or
large (the right of Fig. 19) indentations in the contour; or
those errors lead to a contour which becomes frayed (the
middle of Fig. 19). The examples also show that exact sym-

Fig. 18. Some exemplars of the fly category showing different viewpoints,
i.e. from above (left), from front-above (middle), and from the side (right).
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Fig. 19. Some exemplars of the butterfly category with few small errors
(left), many small errors (middle), few large errors (right); the arrows point
to specific faults.

metries of the butterflies get lost due to noisy data. Precise
geometrical approaches suffer from those differences to the
original outline since such differences sum up in quantita-
tive similarity measures. Here again, the overall posi-
tional-contrast measured by B.A relations stays similar.

5.2.3. Distortions of non-rigid objects

In the case of non-rigid objects such as animals the
problem arises that outlines change while a running camel
for example lifts its legs; and sometimes we cannot tell
apart the two humps which might sometimes be close to
each other while the camel walks and the viewpoint
changes only a little bit (compare Fig. 20). BA relations
change regarding those parts, just as any similarity measure
would change in those cases (such as the Hausdorff dis-
tance). The frequencies of B.A relations regarding other
parts, however, remain the same.

Note that carrying out the MPEG test each of those dis-
torted and imperfect shapes is used both as a query and as
an object of the queried database.

5.3. The qualitative handling of imperfect shapes

Having shown the stability of qualitative features with
regard to the MPEG test, a closer look reveals the reasons,
i.e. how and why the qualitative representation manages
the problems discussed in the previous sections.

The notion of positional-contrast [15] summarises what
the qualitative approach does: to roughly measure how dif-
ferent parts of the outline relate to other parts of that same
outline. Line segments are used as parts and their relative

Fig. 20. Some exemplars of the camel category showing distortions due to
non-rigid object motion: lifting two legs (left), front legs cannot be
separated (middle), the humps cannot be separated (right).

positions are measured according to the orientation grid
(shown in Fig. 5), making the distinctions depicted in
Fig. 4. Taking those BA relations in particular for line seg-
ments which are far apart those relations do not change,
even if the primary segments are oriented differently; what
matters is whether they lie left of or right of the reference
segment. Clearly if a reference segment is oriented differ-
ently the description becomes different; but small distor-
tions change the orientations only slightly or only for a
few reference segments. Changes in orientation mainly
influence the description of nearby line segments. That is
the qualitative description is not that robust when relating
adjacent line segments to each other (2 * n out of #%); but
with respect to non-adjacent line segments the description
is much more robust (and there are many more of them,
namely n> — 2 * n out of n?).

Generally, taking the atomic BA relations alone the
description is quite sensitive since distortions change parts
of the qualitative matrix. Taking frequency distributions of
those relations the description becomes more robust since
the ordering of relations is abandoned. Additionally, little
changes entail either no changes of BA relations at all
(the tolerance range of single qualitative relations is quite
high) or the histogram is slightly changed. This however,
Section 4.3 has shown, still allows the scope histogram to
get ranked higher than other approaches pertaining to
the same complexity class (like compactness, radius ratio,
aspect ratio, and Hu moments).

Eventually taking qualitative Gestalt features things
become even more stable. Reversals for instance occur
regardless of whether dealing with only a few line segments
on a coarse approximation level or whether being faced
with many small segments (see Section 3.4). The main
problem with reversals is that they disappear if the approx-
imation level is too coarse. But this is because the corre-
sponding shape features, then, disappear, and
consequently, other shape descriptors would fail for the
same reason. Fig. 17 provides a good example which dem-
onstrates the stability of reversals: taking a part (i.e. a line
segment) as a reference there are almost always equally
many reversals on all granularity levels with respect to that
same part (e.g. part of a leg, of the body’s back or the top
of the trunk—for this purpose recall Section 3.4).

6. Qualitative similarity measures

What is the distinction between our concept of qualita-
tive similarity measures (as applied in the previous sections)
and the classical approach? Many methods have been
devised most of which rely on similarity measures which
are defined in some quantity space, as on the Cartesian
coordinate system. Such metric-driven approaches use
external reference systems which define an artificial scale
relative to which objects are described [5]. By contrast, a
qualitative approach allows objects to get compared
directly instead of using some intermediate reference sys-
tem. Opposed to metric-driven methods, we refer to the lat-
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Fig. 21. BA-similar objects grouped together: apples, rivers, and MPEG objects.

ter approach as category-driven: perceptual features which
define salient object specific spatial structures [8] directly
determine the similarity of objects at a categorical level.
Their closeness to specific concepts warrant calling them
conceptual features.

Given two objects which are to be compared. While a
common metric-driven approach measures, for instance,
the transformation necessary in order to map one object
onto the other one (looking for precise differences of two
apples), category-driven methods confine themselves to
compare conceptual features (looking at whether both
apples have a stalk). The latter approach is in particular
of advantage whenever the application does not call for
precise mappings (how do the stalks precisely differ), but
for similarities on the conceptual level (straight versus bent
stalk). In fact, conceptually similar objects might be quite
dissimilar with respect to the Cartesian coordinate system.
In these cases, qualitative similarity measures become even
necessary.

A main difference between the metric-driven and the cat-
egory-driven approach concerns precision. If precision is
necessary, a metric-driven approach is required. By con-
trast, if conceptual properties matter (which might be quite
different from the precise metrical point of view), a qualita-
tive approach might be preferable. We summarise these
observations by putting them into the following Defini-
tions, in which the notion of perceptual attributes refers
to distinctions that are easily obtainable by vision (without
requiring sophisticated measurement tools). Some of the
most prominent perceptual attributes are defined as quali-
tative representations in [2].

Definition 7. Qualitative representation

A qualitative representation consists of a number of
jointly exhaustive and pairwise disjoint relations w.r.t. a
perceptual attribute that can be defined on a metric.

BA»; relations form a number of such relations. The
attribute which is encoded by B.A4,; concerns relative posi-
tions among line segments. This attribute is a perceptual
attribute in that all relations can be reliably distinguished
in vision (compare Fig. 4). The B.A,; relations are jointly
exhaustive in the sense that they define (on a specific level

of accuracy) all possible relations among two straight line
segments which are free of intersections. That they are pair-
wise disjoint simply means that each configuration on an
arbitrary fine metric maps to exactly one (qualitative) rela-
tion. Qualitative similarity measures, then, are defined as
follows:

Definition 8. Qualitative similarity measure Given a two-
place function 4 which maps two objects onto a similarity
value. If 4 is defined on a qualitative representation
according to Definition 7, then 4 is called a qualitative
similarity measure.

The apples and rivers, and also the objects of the
MPEG-test are all ordered in accordance to how the under-
lying qualitative representation of B.A relations rank them.
As a consequence, the similarity values we are concerned
with are of an ordinal kind, i.e. we simply determine how
a number of objects are ranked. The domain of our similar-
ity measure is a qualitative representation while its co-
domain is of an ordinal kind. Two objects which are near
each other in the list of ranked objects are perceptually
more similar than those which are rather far apart.
Fig. 21 shows pairs of examples for each of our domains:
apples (with or without stalks and specific dents), rivers
(which are either smoothly curved or twisty), and eventu-
ally object categories (which comprise some bent interior
versus categories which comprise a handle and a body).

7. Discussion

In the first scenario it was sufficient and not difficult to
find a number of appropriate properties to make the dis-
tinctions required, but this may well be more difficult in
other domains. On the other hand, having modelled a
domain by a number of such qualitative properties, accord-
ing to our results, they form a robust set of features appro-
priate in a query-by-sketch system. This is similar in the
geographic domain. However, the MPEG-test additionally
shows that even the renunciation of specific domain prop-
erties leads to satisfactory results with this method. Here,
only frequencies of qualitative relations have been
considered.
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7.1. Granularity

A crucial factor in the performance is the chosen granu-
larity level. In the case of the apples, for example, a dent at
the top might disappear at a coarse granularity level, show-
ing why the algorithm does not perform so well at granu-
larity levels which are so coarse that details disappear.
Such details will probably also disappear for some of the
objects in the collection and, as a consequence, objects
which have different descriptions at finer granularity levels
become more similar at coarser granularity levels and even-
tually get ranked equally in the result set. However, a single
granularity level appears to be sufficient for all objects. We
do not need to decide separately for each object how fine it
should be approximated in order to achieve satisfactory
results, at least in this scenario. But also regarding the
many different and complex object categories in the MPEG
test data set, Section 5.1 has shown that the approach per-
forms robustly with respect to different Ilevels of
granularity.

A useful granularity level can easily be determined with
regard to the application at hand. Examples are given in
the geographic domain: for the purpose of spatial planning
the town planner might decide on a precision which is
about a meter; for the purpose of deciding difficulties a
river presents for a shipping company it suffices to take into
account an even lower level of precision. In this way, the
choice of granularity levels is domain dependent. On the
other hand, a multi-scale approach can easily be applied
if necessary by looking for qualitative distinctions at sev-
eral granularity levels. In this case, however, an algorithm
is required that integrates the rankings which have been
obtained at different granularity levels.

7.2. Complexity

Similarity measures do not go without complexity
issues: how useful is a similarity measure which performs
poorly in terms of run time complexity, especially when
faced with large image databases?

In the first scenario we have compared two search algo-
rithms, one of them based on qualitative features the other
one on quantitative features, in terms of their precision-
recall behaviour. The runtime complexity is in fact different
for both approaches. Taking the number of lines involved,
n, the quantitative approach needs to try n matches, from
which it takes the best (i.e. closest) one. Each match
involves linear time complexity, since only the angles of
adjacent lines and their lengths need to be computed. As
a consequence, the run time complexity of the quantitative
approach is O(n * n) = O(n?).

The qualitative approach on the other hand needs only
to compare a handful of characteristics, which requires
constant time. But the qualitative approach also requires
the computation of a polygon’s course (qualitative matrix),
which is O(n?) since the relative position of each line seg-
ment is considered in relation to each other line segment,

increasing the runtime. However, while the quantitative
approach has to be computed every time a comparison
between two objects is made, the polygon’s qualitative
matrix and probably a number of further qualitative fea-
tures only need to be computed once for each object; the
qualitative features of the polygon can be stored and
directly referred to whenever its similarity to another poly-
gon needs to be determined; and this is done within con-
stant time. Clearly, the same holds also for the other two
scenarios, the runtime complexity being independent of
the chosen domain.

Using qualitative features, there is another advantage
which relates to the organisation of image databases.
Images or (single objects) which are characterised by a
number of qualitative features can be stored in a tree struc-
ture, allowing objects to be indexed in logarithmic time.
This is of advantage in comparison to those methods which
require to check how similar two objects are in terms of
how well they can be (geometrically) mapped onto each
other. However, we do not claim that qualitative represen-
tations are to be taken in every case. The question of
whether to employ qualitative or quantitative features
strongly depends on both the domain (which features are
to be distinguished) and the application (query-by-sketch
of imprecise sketches versus query-by-example of precise
object depictions, for instance).

7.3. Ongoing work

A number of challenges remain which will further
improve the described qualitative framework. General issues
are, how robust qualitative features are with respect to differ-
ent approximation algorithms. Additionally, which kinds of
further qualitative features can be defined which characterise
more Gestalt features of outlines than the notions of the cir-
culation direction and reversals? This relates to the applica-
tion of the method to other domains which probably require
the definition of other features. At last, it is of interest how
the proposed representation can be extended to allow for
interior shapes and configurations of objects.

7.4. Summary

The qualitative representation introduced in this paper
enables a concise characterisation of shape features. While
the limitations of this approach concerns precision, qualita-
tive features closely match perceptual distinctions since they
rely on simple spatial relations which can be unambiguously
determined in vision and which are therefore robustly
obtainable. This is also the reason why qualitative features
closely relate to category specific properties. As a conse-
quence, they can be used as a basis on which the domain
expert defines those category properties which the expert
will take care to distinguish. Both the pomological scenario
and the geographical scenario provide evidence for this,
showing how the field of computer vision and image under-
standing provides promising means to improve methods in
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other disciplines; in this case for efficiently representing,
describing, comparing, and retrieving images.
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