
CBOR (RFC 7049)
Concise Binary Object Representation

IETF94 CBOR lightning tutorial
Carsten Bormann, 2015-11-01

1

CBOR: Agenda

• What is it, and when might I want it?

• How does it work?

• How do I work with it?

2

CBOR: Agenda

• What is it, and when might I want it?

• How does it work?

• How do I work with it?

3

History of Data Formats

• Ad Hoc

• Database Model

• Document Model

• Programming Language Model

Slide stolen from Douglas Crockford

5

TLV

Box notation

6

XML XSD

JSON
• JavaScript Object Notation

• Minimal

• Textual

• Subset of JavaScript

Slide stolen from Douglas Crockford

Values
• Strings
• Numbers
• Booleans

• Objects
• Arrays

• null

Array
["Sunday", "Monday",
"Tuesday", "Wednesday",
"Thursday", "Friday",
"Saturday"]

[
 [0, -1, 0],
 [1, 0, 0],
 [0, 0, 1]

]

Object
{
 "name": "Jack B. Nimble",
 "at large": true,
 "grade": "A",
 "format": {
 "type": "rect",
 "width": 1920,
 "height": 1080,
 "interlace": false,
 "framerate": 24
 }
}

Object
{
 "name": "Jack B. Nimble",
 "at large": true,
 "grade": "A",
 "format": {
 "type": "rect",
 "width": 1920,
 "height": 1080,
 "interlace": false,
 "framerate": 24
 }
}

Map

Application usage of JSON
• No schema needed for parsing
• Representation types:  

bool, number, string, null; map, array
• Semantics:

• struct: key names in map (vs. table use of maps)
• record: position in array (vs. vector use of arrays)

• Extensibility: new keys in a key/value struct
• Ignore what you don’t understand

12

JSON limitations
• No binary data (byte strings)
• Numbers are in decimal, some parsing required
• Format requires copying:

• Escaping for strings
• Base64 for binary

• No extensibility (e.g., date format?)
• Interoperability issues

• I-JSON further reduces functionality (RFC 7493)

13

 
Prof.	Carsten	Bormann,		cabo@tzi.org

Character-
based

Concise	
Binary

Document-
Oriented XML EXI
Data-
Oriented JSON ???

Data	Formats

14

BSON and friends

• Lots of “binary JSON” proposals

• Often optimized for data at rest, not protocol use  
(BSON ➔ MongoDB)

• Most are more complex than JSON

15

Why a new binary object format?

• Different design goals from current formats
– stated up front in the document

• Extremely small code size
– for work on constrained node networks

• Reasonably compact data size
– but no compression or even bit-fiddling

• Useful to any protocol or application that likes
the design goals

16

Concise Binary 
Object Representation

(CBOR)

17

“Sea Boar”

18
“Sea Boar”

 
Prof.	Carsten	Bormann,		cabo@tzi.org

Character-
based

Concise	
Binary

Document-
Oriented XML EXI
Data-
Oriented JSON CBOR

Data	Formats

19

Design goals (1 of 2)

1. unambiguously encode most common data
formats (such as JSON-like data) used in
Internet standards

2. compact implementation possible for
encoder and decoder
3. able to parse without a schema
description.

20

Design goals (2 of 2)

4. Serialization reasonably compact, but  
data compactness secondary to  
implementation compactness
5. applicable to both constrained nodes and
high-volume applications
6. support all JSON data types, conversion to
and from JSON
7. extensible, with the extended data being
able to be parsed by earlier parsers

21

2013-09-13: CBOR RFC
• “Concise Binary Object Representation”:  

JSON equivalent for constrained nodes

• start from JSON data model (no schema needed)

• add binary data, extensibility (“tags”)

• concise binary encoding (byte-oriented, counting objects)

• add diagnostic notation

• Done without a WG (with APPSAWG support)

22

http://cbor.io

23

http://cbor.io

CBOR: Agenda

• What is it, and when might I want it?

• How does it work?

• How do I work with it?

24

CBOR vs. “binary JSONs”

• Encoding [1, [2, 3]]: compact | stream

25

Very quick overview of the format

• Initial byte: major type (3 bits) and
additional information (5 bits: immediate
value or length information)

• Eight major types:
– unsigned (0) and negative (1) integers
– byte strings (2), UTF-8 strings (3)
– arrays (4), maps (5)
– optional tagging (6) and  

simple types (7) (floating point, Booleans,
etc.)

26

Additional information
• 5 bits

• 0..23: immediate value
• 24..27: 1, 2, 4, 8 bytes value follow
• 28..30: reserved
• 31: indefinite length

• terminated only by 0xFF in place of data item 

• Generates unsigned integer:
• Value for mt 0, 1 (unsigned/neg integers), 7 (“simple”)
• Length (in bytes) for mt 2, 3 (byte/text strings)
• Count (in items) for mt 4, 5 (array, map)
• Tag value for mt 6

27

Major types 6 and 7

• mt 7:
• special values for ai = 0..24

• false, true, null, undef
• IANA registry for more

• ai = 25, 26, 27: IEEE floats
• in 16 (“half”), 32 (“single”), and 64

(“double”) bits
• mt 6: semantic tagging for things like dates,

arbitrary-length bignums, and decimal fractions
28

Tags

• A Tag contains one data item
• 0: RFC 3339 (~ ISO 8601) text string date/time
• 1: UNIX time (number relative to 1970-01-01)
• 2/3: bignum (byte string encodes unsigned)
• 4: [exp, mant] (decimal fraction)
• 5: [exp, mant] (binary fraction, “bigfloat”)
• 21..23: expected conversion of byte string
• 24: nested CBOR data item in byte string
• 32…: URI, base64[url], regexp, mime (text strings)

29

New Tags

• Anyone can register a tag (IANA)
• 0..23: Standards action
• 24..255: Specification required
• 256..18446744073709551615: FCFS

• 25/256: stringref for simple compression
• 28/29: value sharing (beyond trees)
• 26/27: constructed object (Perl/generic)
• 22098: Perl reference (“indirection”)

30

Examples

• Lots of examples in RFC (making use of JSON–like “diagnostic notation”)
• 0 ➔ 0x00, 1 ➔ 0x01, 23 ➔ 0x17, 24 ➔ 0x1818
• 100 ➔ 0x1864, 1000 ➔ 0x1903e8, 1000000 ➔ 0x1a000f4240
• 18446744073709551615 ➔ 0x1bffffffffffffffff, 18446744073709551616 ➔

0xc249010000000000000000
• –1 ➔ 0x20, –10 ➔ 0x29, –100 ➔ 0x3863, –1000 ➔ 0x3903e7
• 1.0 ➔ 0xf93c00, 1.1 ➔ 0xfb3ff199999999999a, 1.5 ➔ 0xf93e00
• Infinity ➔ 0xf97c00, NaN ➔ 0xf97e00, –Infinity ➔ 0xf9fc00
• false ➔ 0xf4, true ➔ 0xf5, null ➔ 0xf6
• h'' ➔ 0x40, h'01020304' ➔ 0x4401020304
• "" ➔ 0x60, ”a" ➔ 0x6161, ”IETF" ➔ 0x6449455446
• [] ➔ 0x80, [1, 2, 3] ➔ 0x83010203, [1, [2, 3], [4, 5]] ➔ 0x8301820203820405
• {} ➔ 0xa0, {1: 2, 3: 4} ➔ 0xa201020304, {"a": 1, "b": [2, 3]} ➔

0xa26161016162820203
31

CBOR: Agenda

• What is it, and when might I want it?

• How does it work?

• How do I work with it?

32

http://cbor.me: CBOR playground

• Convert back and forth between diagnostic
notation (~JSON) and binary encoding

33

Implementations
• Parsing/generating CBOR

easier than interfacing with
application

• Minimal implementation:  
822 bytes of ARM code

• Different integration models,
different languages

• > 25 implementations (after
first two years) 

34 http://cbor.io

CBOR and CDDL
• CBOR takeup within IETF is increasing.  

How to write specs?

• CDDL: CBOR Data Definition Language  
https://tools.ietf.org/html/draft-greevenbosch-appsawg-cbor-cddl-07
• The best of ABNF, Relax-NG, JSON Content Rules
• Rough tool available: gem install cddl

• Generate example instances (CBOR or JSON)
• Check instances against the definition

https://tools.ietf.org/html/draft-greevenbosch-appsawg-cbor-cddl-07

reputation-object = {
 application: text
 reputons: [* reputon]
}

reputon = {
 rater: text
 assertion: text
 rated: text
 rating: float16
 ? confidence: float16
 ? normal-rating: float16
 ? sample-size: uint
 ? generated: uint
 ? expires: uint
 * text => any
}

; This is a map (JSON object)
; text string (vs. binary)
; Array of 0-∞ reputons

; Another map (JSON object)

; OK, float16 is a CBORism
; optional…

; unsigned integer

; 0-∞, express extensibility

How RFC 7071 would have looked like in CDDL

GRASP
• Generic Autonomic Signaling Protocol (GRASP)
• For once, try not to invent another TLV format: just use CBOR
• Messages are arrays, with type, id, option: 
 message /= [MESSAGE_TYPE, session-id, *option] 
 MESSAGE_TYPE = 123 ; a defined constant 
 session-id = 0..16777215 
 ; option is one of the options defined below

• Options are arrays, again: 
 option /= waiting-time-option 
 waiting-time-option =  
 [O_WAITING, waiting-time] 
 O_WAITING = 456 ; a defined constant 
 waiting-time = 0..4294967295 ; in milliseconds

37

draft-ietf-anima-grasp-01.txt

Where from here?

• RFC 7049

• http://cbor.io

• cbor@ietf.org

• http://tools.ietf.org/html/cddl

38

